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Single-cell RNA sequencing (scRNA-seq) has emerged as a cen-
tral tool for identifying and characterizing cell types, states, 
lineages and circuitry1–3. The rapid growth in the scale and 

robustness of laboratory protocols and associated computational 
tools has opened the way to substantial scientific discoveries and 
to an international initiative, the Human Cell Atlas (HCA), to build 
comprehensive reference maps of all human cells4. Methods for 
scRNA-seq differ in how they tag transcripts for their cell of origin 
and generate libraries for sequencing. Low-throughput, plate-based 
methods5,6 sort a cell into a well of a multi-well plate. High-
throughput, bead-based methods distribute a cell suspension into 
tiny droplets7–9 or wells10,11 containing reagents and barcoded beads 
to produce a single droplet or well with one cell and one bead that 
is used to mark all of the complementary DNA generated from that 
cell. Scalable, combinatorial indexing methods reverse transcribe 
and barcode messenger RNAs in  situ inside each cell or nucleus, 
without physically isolating single cells12–14 (Extended Data Fig. 1).

scRNA-seq remains a rapidly evolving field15, with continued 
development of new methods and improvement of existing ones. 
There is thus a need to provide benchmarking information to help 
users make informed choices based on each method’s capabilities 
and limitations, compare new methods with existing ones, identify 
shared weaknesses as targets for experimental improvement and 
allow computational method developers to create new data pro-
cessing software packages. Previous comparisons of scRNA-seq 
methods16–21, though useful, have several shortcomings. Many are 

outdated, incomplete, inapplicable (for example, not actually per-
formed with single cells) or insufficiently controlled (for example, 
performed using different biological samples for comparisons); oth-
ers limit their assessment to basic technical factors, but do not assess 
the key benchmark of the ability to recover meaningful biological 
information, such as population heterogeneity and structure. In 
particular, comparisons often focused on cultured cell lines, even 
though in practice most scRNA-seq studies seek insights from tis-
sues and primary cells.

Here, we systematically and directly compared seven methods 
(Fig. 1 and Extended Data Fig. 1), including two low-throughput 
plate-based methods (Smart-seq2 (ref. 5) and CEL-Seq2 (ref. 6)) and 
five high-throughput methods (10x Chromium9, Drop-seq8, Seq-
Well10, inDrops7 and sci-RNA-seq12), producing expression profiles 
from ~92,000 cells overall. We selected representative methods 
that are more widely used and for which we had the expertise and 
resources to prepare libraries. We analyzed three sample types—a 
mixture of human and mouse cell lines, human peripheral blood 
mononuclear cells (PBMCs) and mouse cortex nuclei, each sample 
with two replicates—to generate a total of 36 different scRNA-seq 
libraries. For mouse cortex, we tested four single-nucleus RNA-seq 
methods9,12,22,23. For each sample type, we characterized performance 
with basic metrics, and for PBMC and cortex libraries, we examined 
how well methods capture biological information, a critical part 
of most scRNA-seq studies and one that has not been evaluated in 
other benchmarking exercises that used relatively homogeneous 
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cell lines16,20. Our study provides both immediate guidance on each 
method’s relative performance, and an experimental and computa-
tional framework to assess future techniques. For the low-through-
put methods, Smart-seq2 and CEL-Seq2 performed similarly, 
though the latter may be affected more by contaminating reads from 
other cells. Among the high-throughput methods, 10x Chromium 
was the top performer.

Results
A comparison of scRNA-seq methods. We selected seven scRNA-
seq methods for comparison and tested each with up to three sam-
ple types: a mixture of mouse and human cell lines, human PBMCs 

and mouse cortex nuclei (Fig. 1 and Extended Data Figs. 1 and 2). 
We chose to profile a cell line mixture with 50% human HEK293 
and 50% mouse NIH3T3 cells (mixture) because (1) these cells are 
a common test8,9,12,14 for samples with relatively high amounts of 
RNA per cell; and (2) multiplets, two or more cells being sequenced 
together and assigned one cell barcode, can be detected when cell 
barcodes have a substantial fraction of reads from both species. We 
profiled frozen human PBMCs because (1) they are a heterogeneous 
mixture of cells, particularly with respect to their amount of RNA 
per cell, yet they do not require dissociation (a separate technical 
challenge); and (2) their cell types and associated expression pat-
terns are well-studied. (We do not include data for sci-RNA-seq 
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Fig. 1 | Study overview. a, Samples. b, scRnA-seq methods. c, Computational pipeline summary. Cell line mixtures were tested with all methods. PBMCs 
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sci-RnA-seq. Additional details can be found in Extended Data Figs. 1 and 2. Rep, repeat.
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with PBMCs because we detected very few genes (for example, 
<10 genes) per cell in several experiments (data not shown).) We 
extended our study of single cells to single nuclei, as such samples 
have distinct properties including lower RNA input amounts. Using 
four methods that had previously been applied to nuclei12,22,23, we 
profiled the mouse cortex because brain tissue is a major example 
of a tissue type commonly analyzed through single-nucleus RNA-
seq. Each sample type was tested in two experiments (Mixture1, 
Mixture2, PBMC1, PBMC2, Cortex1 and Cortex2) run on different 
days to assess reproducibility.

In each experiment, we aimed to collect data from ~384 cells for 
the low-throughput methods, ~3,000 cells for the high-throughput 
methods and a bulk RNA-seq library as a control. We sequenced 
libraries together to similar coverage based on library type, except 
as noted (see Methods).

scumi computational pipeline allows unified analysis across any 
scRNA-seq method. Because each method had its own standard 
computational pipeline, we developed and used a ‘universal’ pipe-
line, to permit direct comparison of all of the experimental meth-
ods, and remove processing differences introduced by these existing 
pipelines (Extended Data Fig. 2). First, we developed the scumi 
software package (single-cell RNA-sequencing with UMI; Extended 
Data Fig. 2a), which starts from FASTQ files as input and generates 
gene × cell expression count matrices for downstream analyses.

Second, we addressed the major preprocessing challenge of fil-
tering out low-quality cells before downstream analysis (Extended 
Data Fig. 2b). This is particularly important when comparing 
methods, to ensure that our approach is fair to all methods and 
less subjective. When selecting the cell barcodes with the largest 
number of reads or UMIs assigned to them, the challenge is to 
decide which threshold to choose for excluding lower-quality cells 
or barcodes likely reflecting ambient RNA rather than real cells 
(or nuclei). For the mixture experiments, we removed cells with 
low quantities of UMIs or reads per cell. For the more complex 
PBMCs and cortex samples, consisting of different cells with dif-
ferent characteristics, such a simple approach could bias against 
the recovery of cell types with relatively small amounts of RNA. 
Instead, we first looked at more cell barcodes than we expected to 
truly recover from experiments, did an initial clustering, identified 
differentially expressed genes to find cluster-specific marker genes 
and removed cells in clusters likely to be low quality (Extended 
Data Fig. 2b and see Methods).

Third, before calculating metrics that potentially show improve-
ments with greater sequencing depths, such as the number of genes 
per cell or ability to detect known cell types, we sampled the same 
number of reads per cell for all of the methods of the same type, 
either low- or high-throughput, in a given experiment (see Methods 
and Extended Data Fig. 2c). This leads to better relative performance 
for methods that have a higher fraction of informative reads; that is, 
those reads aligning to genes and present in cells used for analysis. 
Note that because for most experiments we sequenced the poly(T) 
sequences that follow the cell barcode and UMI sequences in all 
methods except Smart-seq2, we tracked and removed reads without 
poly(T) at the expected positions because reads lacking the expected 
read structure are unlikely to be informative for further analysis.

Finally, we assessed the methods by several key metrics spanning 
(1) the structure and alignment of reads to the nuclear and mito-
chondrial genomes; (2) sensitivity in capturing RNA molecules; 
(3) extent of multiplets (assessed in mixture experiments); (4) their 
technical precision/reproducibility with respect to expression esti-
mates; and (5) the ability to recover meaningful biological distinc-
tions in cell types (for PBMC and cortex experiments).

Read structure and alignment reveal efficiency differences among 
methods. First, we characterized the methods by the distribution  

of reads from each library with respect to their structure and 
alignment with the genome (Extended Data Fig. 3). These met-
rics inform about the ‘efficiency’ of methods in generating useful 
reads for downstream analysis. In the mixture experiments, we 
considered only uniquely mapped reads to minimize the effects of 
multi-mapped reads on calculating cell multiplet rates and other 
metrics. Methods differed with respect to reads without poly(T) at 
the expected positions (Supplementary Note 1). We next considered 
the distributions of reads across these categories: exonic, intronic, 
intergenic, overlapping different genes (ambiguous), multi-mapped 
and unmapped. Exonic reads are typically the only reads used in 
scRNA-seq studies of cells, whereas intronic reads are also used 
for studies with nuclei24,25. In the mixture experiment, both repli-
cates of Smart-seq2 and one replicate of inDrops had the highest 
fraction of exonic reads (51.0%, 53.7% and 56.9%, respectively), 
with sci-RNA-seq performing worst (28.7% and 29.4%; Extended 
Data Fig. 3a). Overall, the PBMC samples had a lower fraction of  
reads aligned to exons than the mixture samples (Extended Data  
Fig. 3a,b), with one replicate of inDrops having the highest fraction of 
exonic reads (46%), and Seq-Well having the lowest (20%; Extended 
Data Fig. 3b). To explore the origin of unmapped reads, we further 
analyzed the PBMC datasets and found that most of these reads are 
low quality, align to adapter sequences added during library con-
struction or contain stretches of poly(A) (Supplementary Fig. 1a). 
Using Trimmomatic26 to remove low-quality and adapter sequences 
from the unmapped reads (see Methods), we recovered <5% of the 
unmapped reads in each case, except for inDrops PBMC1 and Seq-
Well PBMC2, for which we recovered ~8% and ~18%, respectively, 
of the initially unmapped reads (Supplementary Fig. 1b).

To determine the extent to which existing annotation lim-
its recovery of reads aligning to genes27, we used the PBMC1 and 
PBMC2 bulk RNA-seq to create a matched transcriptome and 
customized annotation (see Methods). The customized transcrip-
tome annotations led to very few (<2%) additional reads aligning 
(Supplementary Table 1).

While the relative performance of each method was gener-
ally similar between the cortex nuclei and the other experiments,  
there was a higher ratio of intron-aligning reads to exon-aligning 
reads in nuclei than in cells (Extended Data Fig. 3), as expected 
because nuclei contain a higher proportion of unspliced tran-
scripts than whole cells28. We assessed whether reads aligned 
in the sense or antisense orientation for each method, except  
Smart-seq2, which is not strand-specific, and investigated antisense 
reads (Supplementary Note 2).

Method performance relative to mitochondrially aligned reads 
was also analyzed (Supplementary Note 3).

Similar relative ranking of method sensitivity across experiments. 
As scRNA-seq methods start with limited RNA inputs, a key quality 
metric is the sensitivity, or the ability to capture RNA molecules. We 
assessed the sensitivity of each method by measuring the number 
of detected UMIs or genes per cell in datasets sampled to the same 
number of reads per cell (see Methods and Supplementary Table 2).  
The only exception was Seq-Well PBMC1 with ~46,000 reads 
per cell compared with ~69,000 reads per cell for the other high-
throughput methods in PBMC1 (Supplementary Table 2). For the 
mixture experiments, we report the results for mouse and human 
cells separately as the numbers of UMIs and genes per cell in the two 
cell types differ, such that differences in the ratio of human to mouse 
cells among the libraries (Supplementary Table 3) could skew the 
results, but the overall ranking of the methods is the same for both 
human and mouse cells (Fig. 2a,b and Extended Data Fig. 4a).

Overall, the low-throughput methods Smart-seq2 and CEL-Seq2 
had the highest sensitivities, as expected16, whereas among high-
throughput methods, 10x Chromium detected the most UMIs and 
genes per cell. In the mixture experiments, inDrops had the lowest  
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sensitivity and Seq-Well detected fewer genes per cell compared 
with 10x Chromium (v2) and sci-RNA-seq, but more genes per 
cell compared with Drop-seq and inDrops. The relative ranking of 
the methods was generally consistent when comparing the median 
number of detected UMIs per cell (Fig. 2a), detected genes per cell 
(Fig. 2b) or mean detected reads per cell (Extended Data Fig. 4a). 
Similarly, in PBMCs low-throughput methods detected more UMIs 
and genes per cell than the high-throughput methods (Fig. 3 and 
Extended Data Fig. 4b), with similar performance of Smart-seq2 
(2,406 and 2,632 median number of genes detected) and CEL-Seq2 
(2,717 and 2,545; Fig. 3b). Among the high-throughput methods, 
10x Chromium (v3) had the highest median number of UMIs 
(4,494) and genes (1,482) per cell (Fig. 3), and inDrops (366 and 
1,118 UMIs; 256 and 568 genes) and Seq-Well (844 and 577 UMIs; 
513 and 372 genes) had the lowest (Fig. 3). In cortex nuclei, Smart-
seq2 was the only low-throughput method tested and we sequenced 
to a slightly higher depth than for the other samples (Supplementary 
Tables 3–5) and used all of the reads. As expected16, Smart-seq2 
detected more genes per cell than the high-throughput methods 
(Fig. 4 and Extended Data Fig. 4c). Among the high-throughput 
methods, 10x Chromium (v2) had the highest median number of 
UMIs (5,126 and 3,127) and genes (2,462 and 1,744) per cell (Fig. 4 
and Extended Data Fig. 4c).

To explore how sensitivity varied with sequencing depth, we 
sampled fewer reads per cell from each method in the PBMC data-
sets (based on the molecular information matrices; see Methods). 
For each dataset, the relative ranking of the methods with respect 
to the median number of genes per cell (Extended Data Fig. 5a,b) 
or UMIs per cell (Extended Data Fig. 5c,d) detected remained the 
same at all sequencing depths tested. In addition, the number of 
genes detected may not have saturated at these sequencing depths, 
except for Seq-Well PBMC2, though it is possible that low levels 
of reads from other cells increasing the apparent number of genes 
detected may confound these analyses. Comparing this analysis 
sampling from the molecular information matrices versus from the 
raw reads for five of the PBMC1 libraries yielded indistinguishable 
results (Supplementary Fig. 2). Notably, the number of genes and 
UMIs per cell are highly correlated (Extended Data Fig. 5e).

We also performed comparisons with published datasets 
(Supplementary Note 4).

Mixture experiments enable detection of multiplets and reads 
from other cells. In the mixture experiments, we were able to assess 
the frequency of multiplets, because we started with a mixture of 
human and mouse cells. The observed multiplet rates were <3.5% 
for all seven tested methods (Fig. 2c), except for the first inDrops 
experiment, which also had a high fraction of reads without poly(T) 
(Supplementary Table 3). The multiplet rate depends on the num-
ber of cells used in each experiment9 and the ratio of mouse to 
human cells, but it was not possible to sequence the same number of 
cells or the same ratio of mouse and human cells with each method 
(Supplementary Table 3). The multiplet rates of low-throughput 
methods were the lowest (<1%), as expected as fluorescence-acti-
vated cell sorting was used to place a single cell in each well of a 
plate (Fig. 2c).

We also examined how the estimated multiplet rate varied with 
the number of detected UMIs per cell. Generally, multiplet rates 
were higher in cells with the largest number of UMIs (Fig. 2c), as 
expected because multiplets are expected to have more RNA input. 
While most cells with intermediate quantities of UMIs were not 
multiplets, cells with the lowest number of UMIs in some cases 
had higher rates, suggesting that these cells might be low quality or 
have more contributions from cell-free ambient RNA (Fig. 2c). In 
sci-RNA-seq experiment 2, the rate of multiplets decreased more 
gradually than for other methods for unknown reasons (Fig. 2c).

We also used the mixture experiments to ask whether the genes 
detected in a cell were actually from that cell instead of ‘contamina-
tion’ from other cells. As sequencing depth increased, more genes 
were detected from the ‘wrong’ species (Extended Data Fig. 6a,b), 
as reflected by the slope of a regression line along the cell barcodes 
adjacent to each axis (see Methods), such that the best-performing 
methods have the lowest slope. For the low-throughput methods, 
Smart-seq2 performed much better than CEL-Seq2. Among the 
high-throughput methods, inDrops had the best (lowest) slope and 
Seq-Well had the highest slope.

Technical precision, reproducibility and accuracy in gene expres-
sion quantification. To assess technical precision in the mixture 
experiment, which consisted of two homogeneous cell lines grown 
in controlled conditions in culture, we also compared the varia-
tion in scRNA-seq data, which we expect to be primarily driven 
in this case by technical variation16, although some intercellu-
lar heterogeneity may still have been present in our cell cultures. 
Previous studies have demonstrated that such technical variation 
generally follows Poisson distributions16,29,30. CEL-Seq2, inDrops 
and Drop-seq consistently had relatively low extra Poisson coeffi-
cients of variation (Extended Data Fig. 7). Consistent with previous  
findings, Smart-seq2 data had the highest extra Poisson coefficient 
of variation, most likely because no UMIs were used (Extended 
Data Fig. 7).

We also compared reproducibility between replicates and accu-
racy using bulk and pseudo-bulk data (Supplementary Note 5).

Methods vary in their ability to distinguish and recover cell types. 
A key consideration in choosing an scRNA-seq method is its abil-
ity to uncover the underlying biology of interest. Among the many 
biological features studied by scRNA-seq, one of the most promi-
nent use cases is the identification of distinct cell types by cluster-
ing scRNA-seq profiles. Both the PBMC and mouse cortex datasets 
consist of diverse cell types, and were chosen to allow us to compare 
methods for this use case.

To this end, we processed the data with the goal of a fair and opti-
mal assessment of each method. Not only did we sample the same 
number of reads per cell for each low- and high-throughput method 
in each experiment, as in ‘Similar relative ranking of method sensi-
tivity across experiments’ above for the sensitivity metrics, we also 
performed another round of sampling to use the same number of 
cells from each low- and high-throughput method in each experi-
ment (see Methods). The only exceptions were Seq-Well PBMC2, 
which had fewer cells (Supplementary Tables 2 and 4) because we 

Fig. 2 | Performance metrics for mixture experiments. a,b, Distribution of the number of UMIs (a) or genes (b) in human (top) or mouse (bottom) cells 
in the two Mixture experiments (n = 1 biologically independent sample per experiment). For a and b, median and box plots were based on all of the cells, 
but a few outlier cells were omitted in drawing the violin plots. Box plots denote the medians (labeled on the right) and the IQRs. The whiskers of each box 
plot are the lowest datum still within 1.5 IQR of the lower quartile and the highest datum still within 1.5 IQR of the upper quartile. Violin plot width is based 
on a Gaussian kernel density estimate of the data (estimated by the density function with standard parameters), scaled to have maximum width = 1. c, 
Multiplet frequency. We ordered cells based on the number of detected UMIs (or reads for Smart-seq2), from highest (left) to lowest (right). For a given 
number of cells (x axis value), the plot shows the percentage of cells that are multiplets. The dotted lines for sci-RnA-seq Mixture1 and inDrops Mixture1 
and Mixture2 show the multiplet rate including low-quality cells that were not included in subsequent analysis.
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used only one microwell array for that experiment, while we used 
two arrays for Seq-Well PBMC1, and DroNc-seq Cortex2, which had 
fewer cells for unknown reasons (Supplementary Tables 2 and 5).

For each dataset, we clustered the cells or nuclei based on their 
gene expression profiles to assess how well they detected the known 
cell types and their associated transcriptional profiles. For each 
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dataset, we searched a range of parameters to select the optimal 
clustering to recover each of the expected cell types (see Methods). 
We assigned each cluster a cell type identity based on known marker 
genes (see Methods). To quantify the quality of the clusters at sepa-
rating cell types, we scored the expression of each cell for each cell 
type signature generated from known marker genes and calculated 
the area under the receiver operating characteristic curve (AUC) for 

each cluster to estimate how well the cells in a cluster score for each 
cell type (see Methods). The AUC summarizes the performance of 
the gene signature scores in separating a cluster of cells from the 
rest of the cells, with AUC = 1 for all cell types as the ideal outcome.

For PBMCs, methods varied in the ability to distinguish cell 
types, in the proportion of cell types recovered and, in some 
cases, in the recovery of certain cell types altogether. As expected,  
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methods had more difficulty in distinguishing transcriptionally 
related cell types, such as CD4+ T cells, CD8+ cytotoxic T cells and 
natural killer cells (Fig. 5a,b and Extended Data Fig. 8). From the 
t-distributed stochastic neighbor embedding (t-SNE) plots for 
PBMC2, we observed that 10x Chromium and inDrops performed 
well (Fig. 5a and Extended Data Fig. 8b). As all of the libraries for 

each experiment were generated from the same sample, we assessed 
the consistency across methods in the fraction of cells assigned to 
each cell type within an experiment (Fig. 5b). Generally, most meth-
ods successfully recovered the abundant cell types in PBMCs, but 
varied in the relative abundance of cell types. Methods also varied in 
whether cell types were detected, particularly for the rarer cell types, 
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such as plasmacytoid dendritic cells and contaminating platelets 
that were captured in various proportions across methods (Fig. 5b). 
Although platelets are not PBMCs, their presence in this dataset 
reflects incomplete purification of PBMCs from whole blood, as has 
been observed previously9. For the low-throughput methods, we did 
not profile a sufficient number of cells to recover the rarer cell types 
(Fig. 5b) and they performed similarly for the AUC measurements 
(Fig. 5c). In PBMC1 among the high-throughput methods, 10x 
Chromium (v2) showed the best quality for both the number of cell 
types identified and the average AUCs across cell types, followed 
by Drop-seq and 10x Chromium (v3), with Seq-Well and inDrops 
not identifying two cell types (Fig. 5c). In PBMC2, 10x Chromium 
(v2) and inDrops performed well, identifying all of the cell types 
(Fig. 5c). For Seq-Well PBMC2, the poor performance was strongly 
influenced by the low number of cells recovered in the experiment 
(Fig. 5c).

Similar to PBMCs, the mouse cortex has well-defined cell types, 
including excitatory and inhibitory neurons, astrocytes, oligoden-
drocytes, oligodendrocyte progenitor cells, microglia, endothelial 
cells and pericytes31. In both experiments for all of the methods, 
apart from sci-RNA-seq, we identified all of these cell types, except 
pericytes, a rare cell type only found in DroNc-seq Cortex1 (Fig. 6  
and Extended Data Fig. 9). In the sci-RNA-seq datasets, we also 
could not find oligodendrocyte progenitor cells and microglia 
(Fig. 6). In the AUC analysis, Smart-seq2, 10x Chromium (v2) and 
DroNc-seq all had high AUCs, though their relative ability to detect 
the expected cells varied by cell type (Fig. 6c). Notably, even the small 
number of cells in the Smart-seq2 datasets (295 and 349) sufficed 
to find these cell types, in contrast to the PBMC datasets (Fig. 5).  
In the sci-RNA-seq datasets, we could not confidently assign cell 
types to some clusters of cells (7% and 4% of cells; Fig. 6a,b).

Pooled data analysis across methods enhances biological signal 
and consistency. Two general reasons may underlie the failure to 
detect certain cell types: (1) libraries did not contain cDNAs from 
these cell types due to experimental issues; or (2) data quality from 
these cells may not have been sufficient to identify them, given this 
depth of sequencing and number of cells. To distinguish between 
these possibilities, we combined for each PBMC experiment all of 
the sampled data together using Harmony32, re-clustered the cells 
(Extended Data Fig. 10a) and repeated our analysis. Following this 
analysis, all cell types were detected in each library, supporting the 
second possibility and showing the power of accruing data across 
methods (Extended Data Fig. 10b–d). Moreover, we determined 
in which cell type these missing cell types were originally (mis)
assigned (Extended Data Fig. 10c,d). Although most of the com-
bined and individual cell type assignments agree, some cell types 
seemed to be harder to distinguish. For example, in several librar-
ies, such as Smart-seq2 and CEL-Seq2, the undetected dendritic 
cells were grouped with the CD14+ or CD16+ monocytes (Extended 
Data Fig. 10c,d). Overall, 10x Chromium (v2) was the most con-
sistent between the combined- and individual-level clustering, 
followed closely by 10x Chromium (v3), and others having fairly 
high but variable levels of consistency. By contrast with the datas-
ets with lower quality or numbers of cells, the AUC scores for cell 
clusters in the 10x Chromium datasets did not consistently improve 
when all of the datasets were used with the Harmony algorithm 
(Supplementary Fig. 3).

To check the cell types assigned by the combined analysis, we 
examined the cells assigned to cell types missing in our original 
analysis of each library separately. In most cases (20 of 25), we found 
that these cells could be assigned the same identity using our origi-
nal AUC method (see Methods), with some exceptions for rare cell 
types with only ~1–2% of cells in a cluster (Supplementary Table 6).  
Thus, the failure to identify all of the relevant cell types was due, 
as least in part, to data quality issues, such as reads that could not 
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Fig. 6 | Cell type identification and assignment in cortex nuclei.  
a, t-SnE plots of single-cell profiles (dots) from Cortex1 libraries colored  
by cell type. b, Proportion of cells of each cell type (y axis) detected  
with different methods (x axis). c, The AUC (dot size, color and value) of 
each cluster from classifying the cell type to the cluster it was assigned  
for Cortex1 and Cortex2. See Supplementary Table 2 for the numbers of 
cells used (n = 1 biologically independent sample per experiment).  
We could not confidently assign cell types to some clusters of cells  
from sci-RnA-seq and these cells were not used in calculating  
the AUCs.
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be used in the analysis (Supplementary Table 4), with the pos-
sible exception of two rarer cell types in our datasets, platelets and  
plasmacytoid dendritic cells, which may not have been present  
in some datasets. Another possible explanation is that low-quality 
cells were included that prevented identification of distinct cell 
types—this points to the difficulty in finding an optimal filtering 
threshold as well.

Similar analyses were done for mouse cortex nuclei 
(Supplementary Note 6).

Comparison of scumi with standard computational pipelines. 
Although we used the scumi computational pipeline in this study 
to analyze each method’s datasets in as similar a manner as possible, 
we also processed each of the datasets with its original method-spe-
cific pipeline for comparative purposes and found generally similar 
results (Supplementary Note 7).

Discussion
In this study, we systematically benchmarked seven methods across 
three major categories—plate-based, bead-based and combinato-
rial index-based methods—and summarized their relative merits 
(Supplementary Table 7). Our results were generally consistent in 
their ranking of the methods for sensitivity (Figs. 2–4), reproduc-
ibility (Supplementary Fig. 4), technical precision (Extended Data 
Fig. 7) and capturing biological information about cell types (Figs. 
5 and 6, Extended Data Fig. 10 and Supplementary Fig. 5). Having 
a lower fraction of reads aligned to exons (Extended Data Fig. 3) 
could explain lower performance metrics in our comparisons, for 
example, in the Seq-Well PBMC datasets (Figs. 3 and 5). One limita-
tion in our study is that our samples were not appropriate for pseu-
dotime analysis33.

All of the methods were able to generate useful data, but overall 
we found that 10x Chromium had the strongest consistent perfor-
mance—similar to a more limited comparison of high-throughput 
methods20. In our limited testing of 10x Chromium (v3), it had 
higher sensitivity (Fig. 3), but we did not detect improved cell type 
identification (Fig. 5), and had a higher fraction of reads aligned 
to mitochondrial genes (Supplementary Fig. 6). sci-RNA-seq, 
which has the ability to scale to much larger numbers of single 
cells13, may require optimization for use with some samples, such 
as PBMCs. We used the original version with two rounds of index-
ing12. Moreover, its performance with cortex nuclei was not ideal as 
it could not assign an identity to some cells and did not detect all of 
the cell types present (Fig. 6 and Supplementary Fig. 5). For the low-
throughput methods, Smart-seq2 and CEL-Seq2 performed simi-
larly without a consistent pattern for which was better (Figs. 2–5). 
For studies that require the highest sensitivity, these two methods 
are clearly better than the high-throughput methods (Figs. 2–4), as 
shown previously16. Smart-seq2 has inherent advantages for genetic 
variant detection and studying RNA splicing isoforms because its 
sequencing is not limited to the 3′ end of genes—along with the 
disadvantage of lacking UMIs. Note, however, that in CEL-Seq2 we 
cannot rule out the issue of contaminating reads from other cells 
(Extended Data Fig. 6)34 and speculate that there is a step after 
cDNAs are pooled from different cells in which cell barcodes from 
one cell are switched with those from a different cell.

Looking beyond performance, we compared the time and reagent 
costs for each method as performed in this study (Supplementary 
Table 8). Drop-seq, Seq-Well and inDrops had the lowest costs and 
Smart-seq2 was the most expensive, primarily because there is no 
pooling during library preparation. Many of the methods, particu-
larly sci-RNA-seq, would be more cost effective with larger numbers 
of single cells or nuclei13. The 10x Chromium method required the 
least time and Smart-seq2, CEL-Seq2 and inDrops took the most 
time. We did not utilize automation, but it could decrease hands-on 
time and affect cost.

Analyzing single nuclei rather than single cells is an important 
strategy, which addresses tissues that cannot be readily dissoci-
ated into a single-cell suspension (such as brain, skeletal muscle 
or adipose) and frozen samples, and also minimizes the alteration 
of gene expression that may be caused by dissociation35,36. As in 
previous studies24,37, we found that single-nucleus RNA-seq gener-
ally performed well for sensitivity (Fig. 4) and classification of cell 
types (Fig. 6). Even with the inclusion of intron-aligning reads in 
our analysis, a higher fraction of reads for 10x Chromium, and to 
a lesser extent for DroNc-seq, could not be analyzed because of the 
absence of a poly(T) sequence or aligning in an antisense orienta-
tion (Extended Data Fig. 3).

Our study, including the scumi pipeline (for its relative advan-
tages, see Supplementary Note 8), data and approaches, will be a 
resource for future research in many fields where scRNA-seq meth-
ods are applied, and provides important guidance. First, using a 
coherently and reproducibly collected set of data, spanning three 
sample types, it provides direct guidance on key methods by a rich 
set of parameters and considerations—from technical to biological. 
It spans key and popular methods, including the comparison of sin-
gle-nucleus RNA-seq methods. We chose two very different tissue 
types to make our framework and conclusions more generalizable, 
and show this by analysis of published datasets for three other tis-
sues (Supplementary Fig. 7). Our study would allow future studies 
to reduce the number of protocols that need to be tested for new 
tissues. Second, the results presented here for each method could be 
used to further optimize and improve existing scRNA-seq methods. 
Third, our use of representative and easily accessible sample types 
should allow future studies, particularly those introducing new or 
improved methods, to make direct comparisons with this bench-
mark study. Indeed, all datasets were collected in a manner that 
allows open sharing, including the human PBMC data. Finally, we 
expect that our datasets will be valuable for computational method 
developers to benchmark algorithms and build pipelines for efforts 
such as HCA, the BRAIN Initiative, the Cancer Moonshot Human 
Tumor Atlas Network and other efforts to map cells in disease.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, extended data, supplementary informa-
tion, acknowledgements, peer review information; details of author 
contributions and competing interests; and statements of data and 
code availability are available at https://doi.org/10.1038/s41587-
020-0465-8.

Received: 7 May 2019; Accepted: 24 February 2020;  
Published online: 6 April 2020

References
 1. Haque, A., Engel, J., Teichmann, S. A. & Lonnberg, T. A practical guide to 

single-cell RNA-sequencing for biomedical research and clinical applications. 
Genome Med. 9, 75 (2017).

 2. Tanay, A. & Regev, A. Scaling single-cell genomics from phenomenology to 
mechanism. Nature 541, 331–338 (2017).

 3. Wu, A. R., Wang, J., Streets, A. M. & Huang, Y. Single-cell transcriptional 
analysis. Annu. Rev. Anal. Chem. (Palo Alto Calif.) 10, 439–462 (2017).

 4. Regev, A. et al. The Human Cell Atlas. eLife 6, e27041 (2017).
 5. Picelli, S. et al. Smart-seq2 for sensitive full-length transcriptome profiling in 

single cells. Nat. Methods 10, 1096–1098 (2013).
 6. Hashimshony, T. et al. CEL-Seq2: sensitive highly-multiplexed single-cell 

RNA-Seq. Genome Biol. 17, 77 (2016).
 7. Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to 

embryonic stem cells. Cell 161, 1187–1201 (2015).
 8. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of 

individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).
 9. Zheng, G. X. et al. Massively parallel digital transcriptional profiling of single 

cells. Nat. Commun. 8, 14049 (2017).
 10. Gierahn, T. M. et al. Seq-Well: portable, low-cost RNA sequencing of single 

cells at high throughput. Nat. Methods 14, 395–398 (2017).

NATuRe BiOTeCHNOLOGY | VOL 38 | JUnE 2020 | 737–746 | www.nature.com/naturebiotechnology 745

https://doi.org/10.1038/s41587-020-0465-8
https://doi.org/10.1038/s41587-020-0465-8
http://www.nature.com/naturebiotechnology


AnAlysis NATuRE BioTEcHNology

 11. Han, X. et al. Mapping the mouse cell atlas by Microwell-seq. Cell 172, 
1091–1107 (2018).

 12. Cao, J. et al. Comprehensive single-cell transcriptional profiling of a 
multicellular organism. Science 357, 661–667 (2017).

 13. Cao, J. et al. The single-cell transcriptional landscape of mammalian 
organogenesis. Nature 566, 496–502 (2019).

 14. Rosenberg, A. B. et al. Single-cell profiling of the developing mouse brain and 
spinal cord with split-pool barcoding. Science 360, 176–182 (2018).

 15. Svensson, V., Vento-Tormo, R. & Teichmann, S. A. Exponential scaling of 
single-cell RNA-seq in the past decade. Nat. Protoc. 13, 599–604 (2018).

 16. Ziegenhain, C. et al. Comparative analysis of single-cell RNA sequencing 
methods. Mol. Cell 65, 631–643 (2017).

 17. Dueck, H. R. et al. Assessing characteristics of RNA amplification methods 
for single cell RNA sequencing. BMC Genomics 17, 966 (2016).

 18. Svensson, V. et al. Power analysis of single-cell RNA-sequencing experiments. 
Nat. Methods 14, 381–387 (2017).

 19. Bhargava, V., Head, S. R., Ordoukhanian, P., Mercola, M. & Subramaniam, S. 
Technical variations in low-input RNA-seq methodologies. Sci. Rep. 4,  
3678 (2014).

 20. Zhang, X. et al. Comparative analysis of droplet-based ultra-high-throughput 
single-cell RNA-seq systems. Mol. Cell 73, 130–142 (2019).

 21. Wang, Y. J. et al. Comparative analysis of commercially available single-cell 
RNA sequencing platforms for their performance in complex human tissues. 
Preprint at bioRxiv 541433 (2019).

 22. Habib, N. et al. Div-Seq: single-nucleus RNA-seq reveals dynamics of rare 
adult newborn neurons. Science 353, 925–928 (2016).

 23. Habib, N. et al. Massively parallel single-nucleus RNA-seq with DroNc-seq. 
Nat. Methods 14, 955–958 (2017).

 24. Bakken, T. E. et al. Single-nucleus and single-cell transcriptomes compared in 
matched cortical cell types. PLoS ONE 13, e0209648 (2018).

 25. Lake, B. B. et al. Neuronal subtypes and diversity revealed by single-nucleus 
RNA sequencing of the human brain. Science 352, 1586–1590 (2016).

 26. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for 
Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

 27. Wallrapp, A. et al. The neuropeptide NMU amplifies ILC2-driven allergic 
lung inflammation. Nature 549, 351–356 (2017).

 28. Tilgner, H. et al. Deep sequencing of subcellular RNA fractions shows 
splicing to be predominantly co-transcriptional in the human genome but 
inefficient for lncRNAs. Genome Res. 22, 1616–1625 (2012).

 29. Grun, D., Kester, L. & van Oudenaarden, A. Validation of noise models for 
single-cell transcriptomics. Nat. Methods 11, 637–640 (2014).

 30. Wagner, F., Yan, Y. & Yanai, I. K-nearest neighbor smoothing for high-
throughput single-cell RNA-seq data. Preprint at bioRxiv 217737 (2018).

 31. Zeisel, A. et al. Brain structure. Cell types in the mouse cortex and 
hippocampus revealed by single-cell RNA-seq. Science 347,  
1138–1142 (2015).

 32. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data 
with Harmony. Nat. Methods 16, 1289–1296 (2019).

 33. Saelens, W., Cannoodt, R., Todorov, H. & Saeys, Y. A comparison of 
single-cell trajectory inference methods. Nat. Biotechnol. 37,  
547–554 (2019).

 34. Arazi, A. et al. The immune cell landscape in kidneys of patients with lupus 
nephritis. Nat. Immunol. 20, 902–914 (2019).

 35. Lacar, B. et al. Nuclear RNA-seq of single neurons reveals molecular 
signatures of activation. Nat. Commun. 7, 11022 (2016).

 36. van den Brink, S. C. et al. Single-cell sequencing reveals dissociation-induced 
gene expression in tissue subpopulations. Nat. Methods 14, 935–936 (2017).

 37. Lake, B. B. et al. A comparative strategy for single-nucleus and single-cell 
transcriptomes confirms accuracy in predicted cell-type expression from 
nuclear RNA. Sci. Rep. 7, 6031 (2017).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature America, Inc. 2020

NATuRe BiOTeCHNOLOGY | VOL 38 | JUnE 2020 | 737–746 | www.nature.com/naturebiotechnology746

http://www.nature.com/naturebiotechnology


AnAlysisNATuRE BioTEcHNology AnAlysisNATuRE BioTEcHNology

Methods
Single-cell or -nucleus experimental design. We performed two experiments 
with each single-cell method for the mixed cell lines and PBMCs, except as noted. 
To generate data for Seq-Well, we performed a second PBMC1 experiment on 
a different day with an aliquot identical to the one used in the main PBMC1 
experiment to obtain a Seq-Well dataset with sufficient cells profiled for PBMCs. 
Similarly, we performed a third PBMC1 experiment with 10x Chromium (v2; 
designated as ‘B’) and (v3) on a different day. In addition, we performed two 
experiments with four methods for the mouse whole cortex nuclei. In all cases, 
each laboratory method was started at the same time by different researchers, so 
that the results would be directly comparable without any confounding due to the 
time cells or nuclei waited to start the experiment.

Additional experimental details are in the Supplementary Methods.

Computational methods. We present key steps in the analysis with the scumi 
pipeline here and other analyses can be found in the Supplementary Methods.

Annotating each cDNA read with its cell barcode and UMI. Different scRNA-seq 
protocols produce reads with different structures, especially the reads consisting 
of cell barcodes and/or UMI sequences. To address this issue, we used our scumi 
pipeline, which uses regular expressions (text strings defining search patterns) to 
extract the cell barcodes and UMI sequences from different FASTQ files and put 
them in the header of their corresponding cDNA reads. We started with the FASTQ 
files generated after de-multiplexing the BCL files from Illumina sequencers. For 
a typical 3′ tag-based scRNA-seq experiment, a cDNA sequence fragment is in 
one read of a FASTQ file, and its corresponding cell barcode sequences and UMI 
sequences are in a paired read of a separate FASTQ file. For example, for the reads 
generated from the Drop-seq platform8, the cDNA reads are in read 2 and the cell 
barcodes (base 1 to base 12) and UMIs (base 13 to base 20) are in read 1. Details 
about the location of cell barcodes and UMIs can be found in Supplementary Table 9.

The scumi pipeline also corrects for sequence errors in the indices used by 
bead-based methods. We have implemented code similar to the standard Drop-
seq pipeline that overcomes the problems observed for some batches of Drop-seq 
beads, in which up to 20% of the cell barcodes have errors in the last base (base 
12), mostly because the beads (encoding the cell barcodes) only synthesized 11 
(or fewer) bases8. In such cases, base 12 of the cell barcode is actually the first 
base of the UMI sequence, and the last base of the UMI sequence is from the 
poly(T) sequence. This bead synthesizing error can be detected by calculating 
the frequencies of T bases in the UMI sequences. The scumi pipeline first detects 
possible erroneous cell barcodes and then merges these cell barcodes that are the 
same in their first 11 bases but differ in the 12th base. If more than one base of 
the UMI sequences (with the same cell barcode) had a high-frequency of T bases 
(more than 80%), these cell barcodes were removed from further analysis.

Mapping reads to a reference genome. We aligned the merged FASTQ files (each 
cDNA read with its cell barcode and UMI annotations) to a reference genome 
using STAR38 v.2.6.1a, except for Smart-seq2 and CEL-Seq2. For those libraries, 
we used HISAT2 (ref. 39) v.2.0.5 as it is better suited than STAR to paired-end read 
data such as Smart-seq2 because of the way it handles read pairs that do not both 
align to the same region of the genome—leading to more aligned reads and more 
detected genes per cell. Notably, HCA has adopted this aligner for its Smart-seq2 
pipeline (https://staging.data.humancellatlas.org/learn/userguides/data-processing-
pipelines/smart-seq2-workflow/). We also used it for CEL-Seq2 to facilitate better 
performance comparisons between the two low-throughput methods. For mixture 
data, we used the STAR reference available in the hg19 and mm10 v.2.1.0 Cell 
Ranger reference. For PBMC data, we used the STAR reference available in the 
GRCh38 v.1.2.0 Cell Ranger reference. For cortex data, we used the STAR reference 
available in the mm10 v.1.2.0 Cell Ranger reference. We downloaded Cell Ranger 
reference data from https://support.10xgenomics.com/genome-exome/software/
pipelines/latest/advanced/references. For each sample type, we also generated a 
HISAT2 reference with the associated GTF and FASTA files.

Annotating each alignment with a gene tag. We use featureCounts40 from the 
Subread package, v.1.6.2, to add a gene tag to each alignment. To count reads 
overlapping with introns for single-nucleus RNA-seq data, we used a two-step 
approach to first count the reads overlapping with exons. In the second step, 
the reads not overlapping with exons were recounted if they overlapped with 
introns. We only included reads aligning in the sense orientation with the genome 
annotation, except for Smart-seq2, which does not generate strand-specific data.

Counting transcripts of each gene in each cell. For the UMI-based methods, we 
used scumi to generate a cell by gene UMI count matrix. We included a multi-
mapped read if all of its alignments overlapped with a single gene, similar to the 
Cell Ranger pipeline9. We collapsed UMIs in reads from the same gene from the 
same cell based on a Hamming distance of 1. To prevent over-collapsing UMIs41, 
we did not collapse two UMIs—in the same gene in the same cell—if they each had 
support from more than five reads. For Smart-seq2, we used a similar procedure 
to generate the count matrix used for the sensitivity and technical precision 
metrics, except we created a cell by gene read count matrix. For Mixture data, we 
did not include multi-mapped reads in subsequent analyses, and instead used 

featureCounts to count uniquely mapped reads. For Smart-seq2, this resulted 
in each read of a paired-end read being counted separately in the Mixture data 
(though not in the other experiments), enabling us to count reads in pairs in which 
each aligned to a different gene. For clustering Smart-seq2 data and downstream 
analysis, we used RSEM42 v.1.3.0 to generate a cell by gene transcripts per million 
matrix, which was used instead of the UMI count matrix. We generated the RSEM 
reference using the FASTA and GTF files used for creating the STAR and HISAT2 
references (see Mapping reads to a reference genome). When generating the RSEM 
reference for cortex data, we modified the GTF to include one unspliced transcript 
per gene that included all introns and exons in that gene. This allowed us to count 
reads that mapped to introns.

Selecting the number of cells. For an scRNA-seq experiment, we have a rough 
estimate of the number of cells, N, that can be recovered. A simple yet robust 
empirical method (used by Cell Ranger of the 10x Chromium pipeline) for cell 
barcode selection is to first estimate the library size, m (in reads or UMIs), by the 
99th percentile of the top N cell barcodes in terms of the number of reads (or UMIs). 
The cell barcodes with reads (or UMIs) greater than 0.1 × m are considered ‘cells’.

For the cell line mixture experiments, we used different filtering approaches 
depending on the dataset. For 10x Chromium, Drop-seq, Seq-Well, inDrops and 
sci-RNA-seq, we used this empirical rule for cell barcode selection. For Smart-
seq2 and CEL-Seq2, we had a better estimation of the number of cells as we sorted 
individual cells into wells. We used a mixture of two Student’s t distributions43 to 
model the read or UMI (log10 transformed) count distributions of each cell, and 
removed the cells that were likely from the mixture component with fewer reads or 
UMIs (posterior probability ≥ 0.5). The parameters of the Student’s t mixture model 
were estimated by maximizing the posterior distribution using the expectation–
maximization algorithm. For sci-RNA-seq and inDrops, the empirical rule tended 
to select low-quality cell barcodes. We therefore used this mixture model on the cell 
barcodes selected by the empirical rule to further filter out likely low-quality cells.

For all of the high-throughput PBMC datasets, we extracted two times the 
number of expected cell barcodes for each method, choosing the cells with 
the most reads. We removed cells with a high fraction of reads aligning to 
mitochondrial genes (names starting with ‘mt-’ for mouse and ‘MT-’ for human)—
greater than 75th percentile + 3 × IQR of the mitochondrial ratios across the top 
returned cell barcodes, where IQR stands for interquartile range. For each cell, its 
UMI counts were divided by the total number of UMIs from that cell and then 
scaled by multiplying by 10,000 to get transcripts per 10,000 (TP10K). We then 
added 1 to these transcripts per 10,000 and log transformed by the natural log. 
We then performed principal-component analysis using all genes, did clustering 
analysis (Louvain clustering44,45 of the k-nearest neighbor (k-NN) graph built from 
the first 50 principal components of each single-cell dataset with parameter k = 30 
and a resolution parameter used for Louvain optimization of 1.0, implemented 
in the Seurat package46 v.2.3.4 (see Parameter selection for clustering analysis 
section in Supplementary Methods for more details)), followed by differential gene 
expression analysis with the FindAllMarkers command in Seurat to find cluster-
specific (up-regulated) marker genes. To filter out clusters of cells likely derived 
from low-quality cells or empty droplets, we removed clusters with insufficient 
markers genes, as follows. First, we identified marker genes for each cluster as 
genes expressed in ≥25% of cells in that cluster and with false discovery rate 
corrected P values < 0.01 (significantly highly expressed in the cluster compared 
with the cells not in that cluster). Second, we excluded ribosomal protein coding 
genes, MALAT1 and genes starting with MTRNR, as they could be erroneously 
identified as marker genes after normalization and scaling because, for cells with a 
small number of UMIs, the UMIs of highly expressed genes will be weighted more 
than those from cells with a large number of UMIs based on the scaling formula  
xj/sumj xj, where xj is the expression of gene j of a cell. Third, we only kept the 
clusters in which >70% of the top 15 marker genes (or 10 out of all markers genes 
in a cluster that had <15 marker genes) were not mitochondrial protein coding 
genes as high expression of mitochondrial genes can indicate stressed cells or 
empty droplets. This process was repeated twice.

We used a modified strategy for Smart-seq2 and CEL-Seq2 because there were 
fewer cells to cluster, which potentially could have led to the low-quality cells not 
forming distinct clusters. The assumptions for these cell selections were that (1) 
there were enough low-quality cells to form distinct clusters; and (2) the clustering 
algorithm did not split high-quality cells of the same cell type into many distinct 
clusters because this could have led to some subclusters having too few marker genes. 
We therefore set k = 5 (the number of neighbors in building the k-NN graph) to 
detect small clusters with a low resolution parameter of 0.5 to prevent splitting cells of 
the same type into many clusters. We also only used the top 25 principal components 
as we did not expect to identify as many cell types from a smaller number of cells.

For each cortex dataset, the number of UMIs per cell barcode across all cell 
barcodes returned by scumi followed a bimodal distribution, with some cell 
barcodes having few UMIs and others having many. We therefore first used a 
mixture of two Student’s t distributions to fit the UMI count distribution across 
all of the returned cell barcodes. We considered the mixture component with a 
larger mean as the high-quality cell barcode component. We removed from further 
analyses the cell barcodes with posterior probabilities <0.5 from the high-quality 
component. The cell barcodes passing this mixture model filtering (with posterior 
probabilities from the high-quality cell barcode component ≥0.5) were then further 
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filtered using the approach previously described for the PBMC data. We used the 
top 25 principal components and set the number of nearest neighbors k to 10 in 
clustering analyses (the choice of parameters was to help recover rarer cell types 
with lower numbers of UMIs per cell, such as the oligodendrocyte precursors). To 
prevent splitting big clusters due to the small k, we lowered the resolution to 0.8 
instead of 1.0 used for PBMC high-throughput methods. For these nuclei libraries, 
the mitochondrial ratios were very low compared with those from cells, so that it 
was less likely to see low-quality nuclei with mitochondrial protein coding genes as 
the top marker genes. Therefore, in addition to using mitochondrial protein coding 
genes to remove poor-quality nuclei, we removed cluster-specific marker genes that 
were also expressed in >70% of the nuclei from the other clusters in a given library. 
We also used the top 20 marker genes in each cluster for filtering. For Smart-seq2 
data, we only used the mixture model for cell selection as the remaining clusters 
could be assigned known mouse cortex cell types and applying the cluster-based 
filtering removed many cells that could be easily identified as known cell types.

Sampling reads. To correct for differences in sequencing depth between methods, 
we used seqtk v.1.0 (https://github.com/lh3/seqtk) to sample the sequencing data, 
so that for each method we could analyze nearly the same average number of reads 
per cell. Low- and high-throughput methods were sampled separately. For a given 
experiment, we first decided on the average number of reads per cell to sample. We 
usually set this equal to the lowest average number of reads per cell for a method 
in that experiment, except for Seq-Well PBMC1, which had a lower average 
number of reads per cell, so that we chose the library with the next lowest average 
number of reads per cell. For each library in a given experiment, we then derived 
a sampling ratio by dividing this sampling target by the original average number 
of reads per cell in that library. We sampled the FASTQ file for each library with 
the ‘seqtk sample’ command, using the sampling ratio calculated above and the 
random seed set to 100 (after combining FASTQ files from different sequencing 
runs). Although we aimed to have the exact same average number of reads per cell 
for each library, there were some small deviations from this in practice because the 
number of cells we identified in each library was not always the same before and 
after sampling, as well as due to the random nature of the sampling. Details of the 
sampling for each experiment are in Supplementary Table 2.

Automatically assigning cell types to clusters. We followed common practices 
for scRNA-seq data clustering. Specifically, cells were divided into nonoverlapping 
clusters by using the Louvain community detection algorithm44,45. For each cell 
from a dataset, we computed its k-NNs in that dataset, and then built a directed 
k-NN graph using all of the cells from that dataset. This directed k-NN graph was 
further converted to an undirected weighed graph by using shared neighbors. The 
Louvain algorithm was used to partition the undirected weighted k-NN graph into 
nonoverlapping clusters.

We used marker genes for each cell type to compute a score for each cell 
and automatically assign cell types to clusters. Both human PBMC and mouse 
cortex have well-annotated cell types and marker genes for each cell type31,47,48. 
We generated lists of marker genes for each tissue with manual curation 
(Supplementary Tables 10 and 11). The score of cell i for cell type m is a 
normalized version of the percentage of total counts from marker genes from cell 
type m. Assuming that there were Nm marker genes for cell type m, we considered 

these Nm genes combined as a ‘meta-gene’ with counts f mi ¼ PNm

j
xi;j

I

 in cell i, where 

xi,j was the expression (UMI count) of marker gene j for cell type m. The meta-gene 
relative expression in cell i was its count divided by the total count Ci in cell i. We 
obtained the score of cell i for cell type m as smi ¼ logðf mi =Ci ´ 104 þ 1Þ

I
.

Based on the scores, we assigned cell types to clusters using the AUCs. Stated 
another way, for a given cluster and a given cell type c, a cell i in that cluster 
is a true positive if the score sci  is above a given threshold and a false negative 
otherwise. On the other hand, a cell not in that cluster is a false positive if it has 
a score above the threshold and a true negative otherwise. A receiver operating 
characteristic curve plots the true positive rate against the false positive rate at 
different score thresholds. The AUC is 1.0 for perfectly assigning a cell type to 
a cluster (we can find a threshold score perfectly separating a cluster from the 
rest), and around 0.5 for randomly assigning a score to a cell. Specifically, for each 
cluster, the cell type with the maximum AUC was assigned to that cluster. As the 
same type of cells can be split into several clusters, after initial assignment of cell 
types to clusters, we recomputed the AUC of a cluster for a cell type by excluding 
other clusters of cells that were assigned to that cell type. This process was repeated 
until there were no changes in the cluster assignment. We then calculated the AUC 
for a cell type by merging the cluster of cells that were assigned to that cell type.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
RNA-seq data generated in this project are available from the Gene Expression 
Omnibus with accession number GSE132044 and the Single Cell Portal with 
accession numbers SCP424, SCP425 and SCP426. Source data for Figs. 2–6 are 
presented with the paper.

Code availability
The scumi Python package is available freely from bitbucket repository at https://
bitbucket.org/jerry00/scumi-dev/src/master/ and as Supplementary code. The 
R scripts (used to assign cell types to clusters based on a set of marker genes, for 
parameter selecting for clustering analysis and for filtering low-quality cells) are 
available from bitbucket repository at https://bitbucket.org/jerry00/scumi-dev/src/
master/.
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Extended Data Fig. 1 | Description of scRNA-seq methods evaluated. Salient details for seven protocols tested in this paper. Adapted from Figure 2  
of ref. 16.
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Extended Data Fig. 2 | Flowchart detailing computational analysis. a, scumi workflow, b, removing low quality cell barcodes, c, profiling samples, d, bulk 
data workflow.
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Extended Data Fig. 3 | Characterization of genome alignments for sequence reads. a, Mixture, b, PBMCs, c, Cortex. For each pair of bar graphs, 
experiment 1 is on the left and experiment 2 is on the right. For Smart-seq2, there were no poly(T) reads due to the full transcriptome coverage and the 
library construction using transposase-based nextera reagents to attach adapters to both ends of cDnA fragments. Reads were assigned in the following 
order: no poly(T), unmapped or multi-mapped, ambiguous (mapping to a single location that overlaps 2 or more genes), and then one of the remaining 
categories. Reads were assigned as antisense only for the cortex datasets (c). % of reads may not sum to 100 due to rounding and numbers not shown for 
fraction of reads in categories with <2%.
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Extended Data Fig. 4 | impact of number of cells on sensitivity. a, human cells and mouse cells from Mixture experiments. Multiplet cells are not shown 
in this plot. b, PBMC. c, cortex. The number of cells (x-axis) with a given mean number of genes detected (y-axis), when cells are ordered from highest 
(left) to lowest (right) total number of genes. The right most point at the end of each curve shows the average number of detected genes for the final 
selected number of cells in this study.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | impact of sequencing depth on gene and uMi detection per cell in the PBMC datasets. a–d, The median number of genes  
(a, b, y-axis) and UMIs (c, d, y-axis) detected per cell at different sequencing depths (x-axis) for low-throughput (a, c) and high-throughput (b, d) 
methods from PBMC1 (left) and PBMC2 (right). Far right point of each curve: median number of detected genes per cell at full sequencing depth.  
e, Relation between median number of genes and UMIs per cell in PBMC1 (left) and PBMC2 (right). (n = 1 biologically independent sample for each  
curve in each plot).
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Extended Data Fig. 6 | Fraction of reads from each species in Mixture experiments. Fraction of UMIs (or reads for Smart-seq2) aligned to either mouse 
(y-axis) or human (x-axis) in each cell from the Mixture1 a, and Mixture2 b, experiments (n = 1 biologically independent sample per panel). Each dot 
represents a cell. Dashed line and number: robust linear regression fitted line and its slope. number of genes detected from the “wrong” species is higher 
in cells with more reads.
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Extended Data Fig. 7 | Technical precision plots for mixture experiments. Distributions of the extra Poisson coefficients of variation (“Extra Poisson CV”, 
y-axis) from each method (x-axis). a, b, Human cells, c, d, mouse cells – from Mixture1 (left) and Mixture2 (right) (n = 1 biologically independent sample 
per panel). Violin and box plot elements are defined as in Figure 2.
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Extended Data Fig. 8 | Cell type analysis for each PBMC dataset. t-SnEs of single cell profiles (dots) from each method colored by cell type assignment 
from PBMC1 a, and PBMC2 b,. (n = 1 biologically independent sample per panel).
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Extended Data Fig. 9 | Cell type analysis for Cortex2. t-SnEs of single nucleus profiles (dots) from each method colored by cell type assignment from 
Cortex2 (n = 1 biologically independent sample).
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Extended Data Fig. 10 | Cell type analysis of the combined PBMC datasets. a, t-SnE plot generated with Harmony clustering all PBMC cells in this study 
(n = 2 biologically independent samples). b, All libraries contain cells of every cell type, according to this joint annotation. This differs from the individual 
level clustering results, in which many libraries are missing particular cell types (n = 2 biologically independent samples). c, PBMC1 and d, PBMC2. For 
each annotated cell type and method in the jointly clustered dataset (y-axis), we calculated the percentage of cells from that cell type that come from each 
cell type in the individual level clustering results (x-axis). This is denoted by the color of the corresponding boxes (n = 1 biologically independent sample for 
(c) and (d)).
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Data collection The demultiplexed FASTQ files from the sequencing center were shared with us via FTP

Data analysis The scumi (v0.1.0, available from https://bitbucket.org/jerry00/scumi-dev/src/master/) Python package was used to profile single-cell 
datasets to generate gene by cell UMI (read) count matrices. We used STAR v2.6.1a to align reads to genomes and featureCounts v1.6.2 
to annotate each alignment with a gene tag. RSEM v1.3.0 was used to generate TPM matrices for Smart-seq2 data and bulk RNA-Seq 
data. HISAT2 v2.0.5 was used to alignment scRNA-seq data from Smart-seq2 and CEL-Seq2. For de-novo transcript construction, we first 
aligned bulk RNA-Seq data to the genome using HISAT2 v2.0.5 and then used StringTie v0.1.18 for transcript construction. We also used 
Cell Ranger v2.0.0, Drop-seq pipeline v1.3, the inDrops pipeline (https://github.com/indrops/indrops, accessed on May 23  2018),  and 
CEL-Seq2 pipeline (https://github.com/yanailab/CEL-Seq-pipeline, accessed on May 23  2018) to profile the data from their 
corresponding platforms. We used Cell Ranger 3.0.2 to profile 10x Chromium (v3) datasets. We used Seurat v2.3.4 R package for 
clustering analysis and t-SNE dimension reduction, and harmony (https://github.com/immunogenomics/harmony, accessed on Nov  9 
2018) to merge datasets from different runs/platforms. Custom R scripts for filtering low-quality cell barcodes, assigning cell types to 
clusters, and optimizing clustering analysis parameters were available from bitbuckt repo: https://bitbucket.org/jerry00/scumi-dev/src/
master/. Trimmomatic v0.39 was used to trim adapter sequences and low quality bases from unmapped reads. Differential expression 
between methods and between batches was performed with the glm function in R, using the binomial family. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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RNA-Seq (both single cell/nucleus data and bulk) data generated in this project are available from the Gene Expression Omnibus with accession number GSE132044. 
Figures 2-6 have associated source data included. 
No restrictions on data availability.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size We chose the number of cells to profile based on the cell capture rate of lab methods, the frequencies of different cell types in the studied 
tissue,  the costs, and our sense of the sample size of a typical experiment. In each experiment, we aimed to collect data from ~384 cells (or 
nuclei) for the low-throughput methods and ~3,000 cells (or nuclei) for the high-throughput methods. We aimed for 750,000 to 1,000,000 
reads per cell for low-throughput methods and 50,000 to 100,000 reads per cell for high-throughput methods. 

Data exclusions No data was specifically excluded, but filtering was performed as described in the Methods section to exclude cells (cell barcodes) of low 
quality. In some datasets (cell line mixtures), we used a mixture of two Student’s t distribution model to model the read or UMI (log10 
transformed) count distributions of each cell, and removed the cells that were likely from the mixture component with fewer reads or UMIs. 
For other datasets (like PMBCs), we selected more cell barcodes than expected, clustered the data, and removed clusters likely to have 
resulted from low quality cells. The second strategy was chosen to avoid a bias against cells with lower RNA content. We used a combination 
of these approaches for the cortex nuclei datasets. 
In addition, for the standard computational pipeline analyses, we excluded cells using a filter of a minimum number of reads per cell -- see 
Supplementary Table 3. 

Replication For each sample type, we generated two replicates of data using each lab method. Generally, the results (the ranking of methods) from 
replicates were consistent. 

Randomization Not relevant to our study. The cells for each replicate were prepared on different days or from different sources. In our comparisons of 
scRNA-seq methods, we used essentially identical aliquots from the same source of cells. There were no human participants to randomize.

Blinding Not relevant to our study. We used computational analysis methods that were intended to be unbiased in their evaluation of methods. 
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Cell line source(s) HEK293 and NIH3T3 were obtained from the American Type Culture Collection.

Authentication None of the cell lines were authenticated. 

Mycoplasma contamination Both cell lines were tested for mycoplasma contamination using a PCR-based assay (ATCC, #30-1012K) three days prior to 
each RNA-Seq experiment and were negative.

Commonly misidentified lines
(See ICLAC register)

None of these misidentified lines were used.

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Mus musculus, C57BL/6, male, 1 month old animals.

Wild animals None used

Field-collected samples None used

Ethics oversight All animal-related work was performed under the guidelines of the Division of Comparative Medicine, with the protocol (# 
0416-050-1) approved by the Committee for Animal Care of the Massachusetts Institute of Technology, and was consistent with 
the Guide for Care and Use of Laboratory Animals (1996 edition). 

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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