
Williams syndrome (WS; also known as Williams–
Beuren syndrome; OMIM 194050) is a distinctive multi
system disorder (Fig. 1, Supplementary Box 1). The most  
common areas of involvement include the cardio
vascular, central nervous, gastrointestinal and endocrine  
systems, although any organ system could be affected. 
The recognition of WS as a distinct clinical syndrome 
dates back to the midtwentieth century1–3 and know
ledge of the phenotype has steadily expanded over the 
ensuing ~60 years.

We now know that cardiovascular disease is pres
ent in most individuals with WS4–6, with the most fre
quent abnormalities involving vascular stenoses of 
mediumsized and largesized arteries (referred to as 
elastin arteriopathy)7. Depending on the location, sever
ity and timing of onset, the management of the vasculop
athy consists of noninvasive or surgical interventions  
complemented by lifelong monitoring. Additional cardio
vascular features include hypertension and a small  
but increased risk of cardiovascular sudden death8–12. 
The neurodevelopmental phenotype is unique and 
multifaceted. Mildtomoderate intellectual disability is 

common but not universal and is seen in conjunction 
with a distinct cognitive profile of relative strengths and 
weaknesses13,14. In addition, there is a characteristic per
sonality profile that includes overfriendliness, shortened 
attention span and/or distractibility, nonsocial specific 
phobias, and anxiety15,16.

The genetic basis of WS was first identified in 1993, 
when fluorescence in situ hybridization (FISH) stud
ies showed the deletion of an elastin allele (ELN) on 
chromosome 7q17. We now know that WS is caused by 
a <2megabase pair (Mb) microdeletion on chromo
some 7q11.23 and that the local genomic architecture 
predisposes to the de novo occurrence of this deletion18. 
Individuals with WS are therefore hemizygous for the 
25–27 genes that map to this interval and the reduction 
in the gene product of several key genes contributes to 
specific aspects of the WS phenotype.

Since WS was initially described, advances have 
been made in our understanding of the complexity 
and changing nature of the phenotype, the genetic 
basis of WS, the mechanisms that lead to selected 
phenotypes, and the benefit of certain interventions.  
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Abstract | Williams syndrome (WS) is a relatively rare microdeletion disorder that occurs in as 
many as 1:7 ,500 individuals. WS arises due to the mispairing of low-copy DNA repetitive elements 
at meiosis. The deletion size is similar across most individuals with WS and leads to the loss  
of one copy of 25–27 genes on chromosome 7q11.23. The resulting unique disorder affects 
multiple systems, with cardinal features including but not limited to cardiovascular disease 
(characteristically stenosis of the great arteries and most notably supravalvar aortic stenosis),  
a distinctive craniofacial appearance, and a specific cognitive and behavioural profile that 
includes intellectual disability and hypersociability. Genotype–phenotype evidence is strongest 
for ELN, the gene encoding elastin, which is responsible for the vascular and connective tissue 
features of WS, and for the transcription factor genes GTF2I and GTF2IRD1, which are known  
to affect intellectual ability, social functioning and anxiety. Mounting evidence also ascribes 
phenotypic consequences to the deletion of BAZ1B, LIMK1, STX1A and MLXIPL, but more work is 
needed to understand the mechanism by which these deletions contribute to clinical outcomes. 
The age of diagnosis has fallen in regions of the world where technological advances, such  
as chromosomal microarray, enable clinicians to make the diagnosis of WS without formally 
suspecting it, allowing earlier intervention by medical and developmental specialists. Phenotypic 
variability is considerable for all cardinal features of WS but the specific sources of this variability 
remain unknown. Further investigation to identify the factors responsible for these differences 
may lead to mechanism-based rather than symptom-based therapies and should therefore be  
a high research priority.
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Yet, many more unanswered questions remain. Accord
ingly, our ability to optimize care and improve outcomes 
is modest. In this Primer, we provide a snapshot of 
selected WS features across the lifespan, outline cur
rent and emerging diagnostic technologies, discuss 
the genetic basis of some of the most impactful WS  
features, and elaborate on the pathophysiological 
mecha nisms, where known. This information is key for 
the formulation of highpriority future research ques
tions, the answers to which could accelerate WSspecific 
treatments.

Epidemiology
WS is a rare panethnic genetic condition. Although this 
syndrome has been described in different populations 
around the world, most reports address clinical and 
molecular findings, with little focus on epidemiologi
cal data. The most widely cited epidemiological study is 
from Norway19, which reports a prevalence of 1 in 7,500 
live births, a higher prevalence than that often cited in 
many nonepidemiological sources20,21. WS is sufficiently 
rare that it is unfamiliar to most doctors, scientists and 
researchers.

The age of diagnosis of WS has trended towards 
younger ages over the past decades, most notably in 
highincome countries with greater availability of 
molecular diagnostic testing. In cohorts from the USA 
and Australia, the median age of diagnosis decreased by 
more than 2 years to around 1 year of age since the 1980s 
(B.A.K. and M.P., unpublished work). However, series 
from other countries indicate that diagnosis is often still 
established during childhood rather than in infancy, 
even with access to molecular confirmation22,23. Several 
studies reported particular difficulty in diagnosing WS in 
African populations (or in those of African descent)24–26 
owing to a variety of factors. Unfortunately, nearly all 
studies on WS, independent of topic, describe Caucasian 
individuals and few studies whose participants represent 
diverse populations have been published27. Of note, the 
absence of clinically evident cardiovascular disease was 
associated with later diagnosis28.

The prevalence of WS is comparable in males and 
females5,29. However, males are more likely to have severe 
cardiac disease30, especially supravalvar aortic stenosis 
(SVAS)29,31. There is no evidence that WS prevalence 
changes with parental age. Moreover, consistent differ
ences in phenotype have not been associated with the sex 
of the transmitting parent (that is, whether the deletion 
arose in the sperm or the egg)18,32.

Vascular anomalies, such as SVAS and stenosis of 
other large arteries, including the pulmonary arteries,  
descending aorta, renal, mesenteric and coronary arter
ies, contribute to morbidity and mortality across the 
lifespan4. Other features, such as diverticular disease and 
aortic or mitral valve dysfunction, may also influence 
mortality in older age groups but are, to date, insuffi
ciently quantified in the literature. Sudden death inci
dence has been reported as 1:1000 patientyears and is  
often associated with the administration of sedation 
or anaesthesia for cardiac surgery; this rate is 25 to 
100 times higher than in the agematched general popu
lation12. Several adult cohorts have been described with 
participants as old as 86 years of age but few studies 
have included longterm adult followup33,34, making 
it difficult to accurately estimate the life expectancy of 
individuals with WS.

Mechanisms/pathophysiology
General mechanisms underlying WS
In the 1990s, compelling evidence emerged indicating 
that WS is a genetic disorder with an autosomal domi
nant mode of inheritance35–38. Nongenetic risk factors 
are not known to contribute to the occurrence of WS.

Genomic structure and rearrangements. WS is caused by 
the pathological loss of the WS critical region (WSCR), 
a 1.55–1.83 Mb region that encompasses 25–27 unique 
proteincoding genes on chromosome 7q11.23. The 
WSCR frequently undergoes rearrangement due to 
the presence of large, complex segmental duplications 
termed lowcopy repeats (LCRs), which are highly sim
ilar to one another and flank the WSCR39. The LCRs 
extend for several hundreds of kilobases, are comprised 
of genes and pseudogenes organized into distinct blocks 
(designated A, B and C), and contain extensive stretches 
of >99% nucleotide identity. They are thought to have 
emerged during primate evolution, first by duplication 
of smaller segments and later by transposable element 
(for example, Alumediated) shuffling, to produce the 
complex arrangement that exists in humans today40.

The LCRs mediate nonallelic homologous recombi
nation (NAHR) events between the highly similar DNA 
sequences during meiosis, resulting in an increased rate 
of de novo copy number variation (CNV) events within 
the region39,41–43 (Fig. 2). The WS deletion commonly 
occurs through NAHR between B block sequences in 
direct orientation with respect to each other, with the 
specific breakpoints depending on the precise site of 
NAHR39. The reciprocal event (that is, the duplication 
of the same genomic area) produces a condition referred 
to as 7q11.23 duplication syndrome, resulting in three 
copies of each WSCR gene. Recombination between 
B blocks (LCRs with the highest nucleotide identity) 
in an inverted rather than direct orientation results in 
an inversion of the intervening chromosome segment42 
(Fig. 2). This inversion, which is present in 6–7% of the 
general population44, does not cause symptoms45 but 
seems to increase the incidence of subsequent meiotic 
rearrangements42,44. Other LCRspecific rearrangements 
have also been observed at a higher frequency in the 
transmitting parents of children with WS41.

Author addresses

1Translational Vascular Medicine Branch, National Heart Lung and Blood Institute, 
National Institutes of Health, Bethesda, MD, USA.
2The Sagol School of Neuroscience and The School of Psychological Sciences, Tel Aviv 
University, Tel Aviv, Israel.
3Department of Paediatrics, Universidade de São Paulo, São Paulo, Brazil.
4Department of Psychological and Brain Sciences, University of Louisville, Louisville,  
KY, USA.
5Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
6Department of Psychology, Macquarie University, Sydney, Australia.
7Department of Paediatrics, Massachusetts General Hospital and Harvard Medical School,  
Boston, MA, USA.

2 | Article citation ID:            (2021) 7:42  www.nature.com/nrdp

P r i m e r

0123456789();: 



Atypical deletions. While most deletions span the typical 
1.55–1.83 Mb interval at 7q11.23, there are individuals 
with rare deletions that encompass smaller or larger 
segments of the WSCR, often with one common and 
one unique breakpoint. Larger deletions that extend 
beyond the WSCR generally cause additional features. 
When these deletions extend towards the telomere and 
span the YWHAG and/or MAGI2 genes, seizures are 
common46,47, although there are reports of epilepsy in 
individuals with the typical deletion48. Inclusion of the 
AUTS2 gene on the centromeric side may result in a 
smaller head size than is usually seen in WS49 and larger 
deletions can also alter the characteristic WS behav
ioural profile49,50. The deletion of HIP1 (formerly HSP27)  
in particular has been associated with more severe  
intellectual disability50,51.

Smaller deletions result in a subset of the phenotypic 
features seen in classic WS40,50,52–64 but clearcut correla
tions between deletion size and specific phenotypic fea
tures are challenging, with the exception of ELN. This is 
likely due to the paucity and variety of small deletions, 
differing methods for phenotypic assessment and the 
high likelihood of the combinatorial effects of gene dele
tion. Several specific genotype–phenotype relationships 
are discussed in the next section.

Genomic analyses. CNV events of the 7q11.23 region have  
been shown to affect both gene transcription and DNA 
methylation across the entire genome. Initial studies in 
WS lymphoblast cell lines identified the dysregulation of 
genes involved in glycolysis and neuronal migration65, 
while subsequent studies of blood RNA highlighted the 

Endocrine and growth

• Early puberty (+++)
• Slow physical growth (+++) 
• Hypercalcaemia (+) 

• Prediabetes or DM (+++)
• Lipoedema (++)
• Overweight or obese  (++)

• Thyroid abnormalities (++)

Eye and ear

• Strabismus (+++)
• Recurrent otitis media (++)
• Tear duct hypoplasia (+)

• Hearing loss (+++)

• Sound sensitivitiesb (+++)
• Stellate irides (+++)

Developmental and neurological

• Developmental delay and/or ID (+++)
• Hypotonia (+++)
• Typical cognitive profile (+++) 
• Chiari malformation (+)
• Tethered cord (+)

Gastrointestinal

• Feeding difficulties (+++)

• Diverticulitis (++)

• Constipation (+++)
• Abdominal pain (++)
• GERD (++)

Integumentary

• Premature graying of hair (+++) 

• Soft skin (+++)
• Hernias (++)

Musculoskeletal

• Decreased bone mineral density (++)
• Scoliosis (++) 

• Joint laxity and/or contractures (+++)

Cardiovascular

• Hypertension (++)

• Vascular stenoses (+++)
• CV collapse (with or without 
 anaesthesia) (+)

Genitourinary

• Enuresis (++)

• Bladder diverticuli (++)

• Urinary frequency (+++)
• Structural renal anomalies (++) 

Cranofacial and dental

• Characteristic facies appearance (+++)
• Malocclusion (+++)
• Microdontia (+++)

Behavioural and psychiatric

• ADHD (+++)

• Anxiety (+++) 
• Depression (++)

• Social or hypersocial personality (+++) 
• ASDa (++)

Infancy or childhood
Adolescence or adulthood
Throughout the life span

Age of peak prevalence

Peak frequency
(+) <10% (++) 10–50% (+++) >50%

Fig. 1 | Salient features of Williams syndrome. The age of peak prevalence and the frequency of prominent signs or 
symptoms in organ systems affected in Williams syndrome (WS) are indicated. Further reading for selected features that 
were not the focus of the review is included in Supplementary Box 1. aEstimates of co-occurring autism spectrum disorder 
(ASD) vary (12–20%). Most individuals with WS who have ASD fit in Wing and Gould’s293 active-but-odd subtype of ASD233 
rather than the aloof subtype of ASD. As such, the diagnosis of and interventions for ASD in WS are complex and ideally 
benefit from the engagement of practitioners who are knowledgeable about both disorders. bSound sensitivities include 
one or more of the following: hyperacusis, odynacusis, auditory allodynia and auditory fascinations. ADHD, attention- 
deficit/hyperactivity disorder; CV, cardiovascular; DM, diabetes mellitus; GERD, gastro-oesophageal reflux disease;  
ID, intellectual disability.
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upregulation of three gene expression modules linked to 
B cell activation, RNA processing and RNA transport66.

Transcriptome analysis of more relevant cell types 
has been made possible by the ability to reprogramme 
somatic cells into induced pluripotent stem cells (iPSCs) 
and direct them down specific cell lineages67. For exam
ple, iPSCderived cortical neurons from individuals 
with WS show reduced expression of genes involved in 
neuro transmitter receptor activity, synaptic assembly 
and potassium channel complexes68. A comparison of 
gene expression in WS iPSCs with those from individ
uals with 7q11.23 duplication syndrome revealed that 
many of the differentially expressed genes have a sym
metrically opposite pattern of expression69. A similar 
symmetrical gene–dosedependent pattern was seen 
in DNA methylation analysis of blood DNA from indi
viduals with WS (7q11.23 deletion) and those with the 

7q11.23 duplication syndrome70, suggesting that CNV in 
this area affects the epigenetic regulation of the genome.

Molecular mechanisms
The WSCR contains 25–27 genes and several noncoding 
RNAs. Knowledge about how each of these genes contrib
utes to the WS phenotype is still growing (Fig. 3). Several 
mouse models inform these efforts, including single 
gene knockouts as well as deletion of the entire WSCR 
(complete deletion (CD))71–73 and two halfdeletions 
(proximal deletion (PD) and distal deletion (DD))74. To 
refine genotype–phenotype correlations, we will focus 
only on selected singlegene knockout models.

Seven genes (BAZ1B, VPS37D, STX1A, LIMK1, CLIP2,  
GTF2IRD1 and GTF2I) have a probability of lossof 
function intolerance (pLI) score of 0.9 or higher75, sug
gesting that only a subset of the genes in the WSCR 
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MIR590ABHD11

ELN-AS1 

Larger 1.83 Mb deletion 

Includes GTF2I ID

Spares GTF2I No ID but WS social behaviours

Spares GTF2I and GTF2IRD1 No ID or WS social behaviours 

Includes GTF2I and GTF2IRD1 ID and WS social behaviours

Classic 1.55–1.83 Mb deletion ID and WS social behaviours 

Low-copy
repeat

Commonly deleted
protein-coding gene

Variably deleted
protein-coding gene

Repetitive
blocks

Flanking
gene

Non-coding
RNA

Common
rearrangement

Atypical
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Fig. 2 | Genomic organization of the Williams syndrome critical region. The vast majority of Williams syndrome (WS) 
deletions (~90%) span a 1.55-megabase pair (Mb) region encompassing 25–27 protein-coding genes in the WS critical 
region on chromosome 7q11.23, with the remainder being slightly larger (1.83 Mb)39. The larger, less common deletion 
occurs between low-copy repeats designated as ‘A blocks’, which are present in the great apes, whereas the smaller, more 
common deletion occurs between ‘B blocks’, which are only present in humans. B blocks originate from a more recent 
evolutionary duplication event and have a higher sequence identity than A blocks40. The WS deletion commonly occurs 
through non-allelic homologous recombination between B block sequences in direct orientation with respect to each 
other39; however, recombination between B blocks in an inverted orientation also occurs, resulting in inversion of the 
intervening chromosome segment42. Smaller, atypical deletions occur infrequently but can provide valuable insight into 
the genotype–phenotype relationship59,62,138–140. Several names exist for many of the genes mapping to the WS critical 
region (see reF.294 and NCBI Gene). ID, intellectual disability. Adapted from reF.295, Springer Nature Limited.
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directly contributes to phenotype. A pLI score is cal
culated by examining the frequency of lossoffunction 
variants in a population; fewer variants than expected is 
associated with a higher score and implies a greater like
lihood of pathogenicity. It is important to point out that 
the gene with the greatest support for a role in the pheno
typic consequences of WS is ELN, which has a pLI of 0. 
Similarly, considerable evidence implicates the deletion 
of MLXIPL (pLI = 0.05) in metabolic aspects of WS. 
These two examples highlight the inadequacy of predic
tors such as pLI in identifying all pathogenetic genes. An 
overview of the bestcharacterized genotype–phenotype 
correlations for WSCR genes is provided below.

Elastin. The ELN gene is transcribed in tissues that 
stretch and recoil such as the lungs, skin and elastic arter
ies (including the aorta, where elastin accounts for up to 
50% of the vessel’s dry weight)76,77. The protein consists 
of repeating hydrophobic and crosslinking domains. 
The crosslinks allow monomers to be bound to one 

another in a highly interwoven polymer that allows for 
the distribution of force, while the hydrophobic domains 
drive the recoil process through entropy when they are 
exposed to an aqueous environment with tissue expan
sion (stretch)78,79. The polymer is longlived, with a 
short window for deposition and a calculated halflife 
of 74 years80. Interestingly, although robust elastogenesis 
occurs only during early growth and development, ELN 
is thought to be continually transcribed throughout the 
lifespan81. Outside of this tight developmental window, 
ELN transcripts are quickly turned over82,83. As such, 
this connection between transcription, translation and 
assembly is ripe for investigation.

Individuals with lossoffunction point mutations84–86  
or intragenic deletions87 within ELN have ELNassociated 
familial SVAS and develop cardiovascular manifestations 
that are indistinguishable from those found in WS. 
Common features include focal or longsegment steno
sis (narrowing) of the large elastic arteries in the setting 
of a globally narrow and thickwalled vasculature4,6,7,30,88. 

Structural protein affecting connective tissue mechanics
Features in individuals 
with Williams syndrome
• Stenosis of large and 
 medium arteries, 
 especially aorta and 
 pulmonary artery
• Hypertension and arterial 
 stiffness
• Mechanical changes to 
 lungs and skin, resulting 
 in mild phenotypes

Transcription factors
Features in individuals 
with Williams syndrome
• Intellectual disability
• Increased social approach 
 to familiar people
• Indiscriminate social 
 approach to strangers 
• Difficulties with social 
 pragmatics

Transcription factor (ChREBP)
Metabolic homeostasis
• Insulin sensitivity
• Lipid regulation

MLXIPL

Chromatin remodelling
Neural crest development
• Craniofacial structure
• Enteric nervous system

BAZ1B

Actin polymerization
Cytoskeletal remodelling
• Visuospatial processing
• Visuospatial construction
• Long-term memory

LIMK1

Exocytosis
Neurotransmitter release 
and insulin secretion
• Diabetes mellitus
• ADHD and/or ASD

STX1A

ELN GTF2I and GTF2IRD1

Blood
vessel

Features of Gtf2i-deletion 
mouse models
• Embryonic deficits in 
 CNS development
• Myelination deficits
• Increased calcium entry to neurons
• Increased axonal outgrowth
• Increased social interaction
• Increased anxiety-like behaviour
• Impaired object recognition

Features of Eln-mutant mouse models
• Eln+/-  (~50% usual elastin), 
 Eln-/-;ELN+ (~30% usual elastin) 
 - Increased elastic lamellar number 
  and wall thickness 
 - Elevated BP, altered vessel mechanics 
 - No hourglass stenosis  
• Eln-/- (no elastin), 
 SM22aCre; Elnflox/flox (incomplete aorta internal 
 elastic lamina, outer media elastin clusters) 
 - Both die from vascular occlusive disease 

Fig. 3 | Phenotypic consequences of deleting key genes in the Williams syndrome critical region. Putative or eluci-
dated genotype–phenotype relationships for six genes in the Williams syndrome critical region are depicted, including ELN, 
GTF2I and GTF2IRD1, BAZ1B, LIMK1, STX1A and MLXIPL, which encodes carbohydrate-responsive element-binding protein 
(ChREBP). Phenotypes in mouse models and in individuals with Williams syndrome are indicated for ELN and the GTF2I 
genes because, at present, their mechanisms of action are best delineated and they offer the best targets for therapy. ADHD, 
attention-deficit/hyperactivity disorder; ASD, autism spectrum disorder; BP, blood pressure; CNS, central nervous system.
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Stenosis of the supravalvar aortic and supravalvar pul
monary arteries are the most common and show con
siderable variability in severity29,89. While pulmonary 
artery stenoses often improve with age, narrowing on 
the aortic side may stay the same, improve or worsen 
with time5,88,90. Other vessels, such as the descending 
aorta, renal arteries, mesenteric arteries and coronar
ies may also exhibit stenosis, with symptomatology 
pointing to hypoperfusion of the associated endorgan 
(hyper tension, abdominal pain, and cardiac hypo
perfusion with ST elevation or sudden death). Even in 
the absence of stenosis, individuals with either WS or 
familial SVAS have high rates of hypertension and vascu
lar stiffness, which are detectable as early as infancy and 
childhood8,91. An increased sudden death relative risk 
with and without anaesthesia has been reported10,92–94; 
the precise mechanism by which this occurs is not cur
rently known but it is expected to be multifactorial, 
reflecting the complex vascular pathophysiology95.

Heterozygous Eln knockout (Eln+/–) mice recapit
ulate relevant cardiovascular features of WS, includ
ing aortic wall thickening, hypertension and cardiac 
hypertrophy7; however, it has been difficult to replicate 
the hourglasstype supravalvar stenoses commonly seen 
in individuals with WS or familial SVAS. Neither Eln+/– 
nor transgenic Eln–/– mice expressing the human ELN 
gene (Eln–/–;ELN+ mice, which have 30% of normal elas
tin levels) develop frank stenosis, although Eln–/–;ELN+ 
mice exhibit more severe arterial wall thickening, luminal 
narrowing, hypertension and cardiac hypertrophy than 
Eln+/– mice96. Discrete stenosis or coarctation (congenital 
narrowing) of the aortic arch as well as the development 
of neointima (thickening of the intima characteristic of 
segmental aortic stenoses in WS) have been described in 
mice with a homozygous Eln deletion restricted to vas
cular smooth muscle cells97. Unfortunately, most of these 
mice do not survive past postnatal day 18.

Several hypotheses have been postulated for the mech
anism by which elastin insufficiency causes large vessel 
arteriopathy. Segmental stenoses are thought to develop 
through the increased proliferation and migration of vas
cular smooth muscle cells due to a reduction or lack of 
elastin98–100. Lineage tracing in Eln–/– mice indicates that 
the excess cells responsible for inward remodelling of the 
arterial wall are not clonal but are derived from multiple 
existing smooth muscle cells in the media layer101. Inward 
remodelling is caused, in part, by excess integrin β3 sig
nalling as genetic or pharmacological inhibition of this 
pathway reduces vascular pathology and extends lifespan 
in Eln–/– mice101. Other work suggests that, rather than 
an increase in proliferation, elastin insufficiency pro
duces medial fibrosis, altered mobility of smooth muscle 
cells and abnormal circumferential growth, leading to a 
smaller lumen size and thicker arterial walls102. Additional 
studies suggest that hypertension arises in Eln+/– mice as 
part of a developmental adaptation to normalize vessel 
wall stress, capitalizing on the increased pressures to 
prop open the narrow, stiff elastininsufficient vessels103, 
although more recent studies indicate that reactive oxy
gen species (ROS) production may also play a role74. 
Several additional molecular and cellular mechanisms 
impact the pathogenesis of elastin arteriopathy, including 

mechanistic target of rapamycin (mTOR) perturbation of 
smooth muscle mechanosensing104–106, and the adaptive 
immune system29.

In addition to vascular disease, patients (and mice) 
with elastin insufficiency have impaired pulmonary107–109 
and skin110,111 elastic fibres, leading to impaired tissue 
mechanics. Other common connective tissue features 
of WS may also be linked to elastin insufficiency such 
as periumbilical or inguinal hernias112, hoarse voice113, 
earlieronset skin wrinkling111, atypical scar formation111 
and genitourinary phenotypes112.

NCF1 modification of elastin-mediated hypertension. 
NCF1 resides at the telomeric end of the WSCR. Two NCF1  
pseudogenes, NCF1B and NCF1C, are present in the 
LCR regions that flank the typical deletion. NCF1 is  
the regulatory subunit for several NADPH oxidase 
(NOX) complexes and generates ROS in multiple cell 
types, including endothelial cells, smooth muscle cells 
and leucocytes, following various stresses114,115. A dele
tion that removes NCF1 is found in ~50% of individuals 
with WS91,116. Loss of NCF1 has been associated with rela
tive protection from hypertension and vascular stiffness 
in individuals with WS91,116 and in animal models74,117,118.

GTF2I and GTF2IRD1. GTF2I and GTF2IRD1 are par
alogous genes located on adjacent loci at the telomeric 
end of the WSCR. They encode transcription factors and 
contribute to typical WS behaviour and development. At 
the molecular level, GTF2IRD1 and GTF2I encode BEN 
and GTFIII, respectively, which are members of a versa
tile protein family with broad functional activities119–121. 
GTFIII is a highly conserved and ubiquitously 
expressed multifunctional transcription factor122–125 that 
regulates gene expression120,126,127 through inter actions 
with tissuespecific transcription factors and complexes 
related to chromatin remodelling125. GTFIII is acti
vated in response to various extracellular signals and 
then translocates to the nucleus121,125,126,128. GTFIII has 
been shown to be involved in multiple processes, which 
include regulating embryonic development122,129,130, the 
cell cycle125,127,131,132, actin cytoskeleton dynamics, axon 
guidance132 and epigenetic regulation133,134. Indeed, an 
iPSCbased study showed that GTF2I alterations are 
responsible for 10–20% of the transcription dysregulation 
in diseaserelevant pathways in WS and in the 7q11.23 
duplication syndrome, beginning in the pluripotent  
state and further amplified during development69.

From a phenotypic standpoint, individuals with clas
sic deletions of the WSCR14 and those with shorter dele
tions that result in the loss of GTF2IRD1 and GTF2I62 
(Fig. 2) typically show intellectual disability, high social 
approach to familiar persons and indiscriminate social 
approach to strangers (also referred to as social disin
hibition or hypersociability), and difficulties in social 
communication (pragmatics). By contrast, individu
als with deletions that spare these two genes typically 
exhibit neither intellectual disability40,54,56,59,135–137 nor 
these social characteristics59,138. Interestingly, individ
uals with shorter WS deletions that spare GTF2I but 
remove GTF2IRD1 also typically do not exhibit intel
lectual disability or hypersociability136,139 but they do 
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show an increased social approach to familiar people 
and a difficulty with social pragmatics136. Further evi
dence for the role of GTF2I gene dose in intellectual 
ability comes from a family with a very short duplication 
affecting GTF2I but not GTF2IRD1; all family members 
with the GTF2I duplication had intellectual disability, 
whereas the intellectual ability of those with the usual 
two copies of GTF2I was average140.

As in humans, partial hemizygous deletion of the 
mouse WSCR including Gtf2i results in increased socia
bility but also impairs motor coordination in mutant 
mice71. The homozygous deletion of Gtf2i in mice results 
in embryonic lethality owing to severe developmental 
abnormalities122,124,141, such as exencephaly and neu
ral tube disclosure, whereas heterozygous mice show 
impaired social habituation to an unfamiliar mouse141,142. 
The selective deletion of Gtf2i in excitatory neurons leads 
to myelination alterations, motor deficits and hyper
sociability, which normalize with the pharma cological 
rescue of myelination143,144. Intracisternal Gtf2igene 
therapy in the CD mouse model resulted in beneficial 
effects on behavioural deficits related to motor, social 
and anxietylike behaviours145.

Taken together, these findings suggest that the loss 
of a GTF2I allele is a major contributor to the intellec
tual disability and social disinhibition that are charac
teristic of individuals with WS. Deletion of GTF2IRD1, 
even without deletion of GTF2I, likely contributes to 
the social communication difficulties and generally 
increased social approach. Findings of dosedependent 
Gtf2ispecific social and anxiety phenotypes in mouse 
models146,147 converge with those observed in the human 
hemideletion and duplication syndromes14,146,148,149. In a 
study of the effects of Gtf2i copy number on cortical neu
ron maturation and function, mice with a single copy 
of Gtf2i showed increased axonal outgrowth, whereas 
this outgrowth was decreased in mice with three Gtf2i 
copies150. The axonal growth effects of GTFIII might 
occur through the regulation of the expression of the 
homeobox proteins DLX5 and DLX6 (reF.151), thereby 
affecting the excitatory/inhibitory balance in the brain152. 
This balance has been suggested as a possible mecha
nism that causes autism spectrum disorder (ASD)153. In 
this regard, it is noteworthy that both deletion154,155 and 
duplication156 of the WSCR are associated with elevated 
rates of ASD.

Other candidate genes. For several other genes within 
the WSCR, there is emerging evidence of an association 
with components of the WS phenotype (Fig. 3). BAZ1B,  
a member of the BWICH chromatin remodelling com
plex, is essential for correct neural crest cell migration 
in vitro157 and in vivo158 and has been proposed as a 
master regulator of human craniofacial development157.  
As the enteric nervous system is also derived from the 
neural crest159, it is possible that abnormal inner vation 
of the intestine contributes to WS gastrointestinal  
phenotypes such as dysmotility and chronic constipation.

LIMK1 regulates actin cytoskeleton assembly and 
disassembly and has been linked with visuospatial 
cognitive ability in individuals with WS64 and in the 
general population160. Limk1–/– mice show visuospatial 

deficits, an altered dendritic spine morphology and 
reduced synaptic plasticity, leading to reduced long 
term memory. Limk1 expression can be upregulated by 
both brainderived neurotrophic factor161 and cAMP 
response elementbinding protein162, suggesting potential  
therapeutic avenues.

Syntaxin 1A (STX1A) is a key member of the protein 
complex that mediates exocytic vesicle fusion, thereby 
allowing the release of neurotransmitters into the syn
apse. Neuropsychiatric disorders found in individuals 
with WS have been associated with STX1A variants163,164. 
Insulin secretion from the pancreas is also dependent on 
exocytosis165 and STX1A levels are indeed reduced in 
members of the general population with type 2 diabetes 
mellitus166. Diabetes is common in adults with WS167, 
suggesting a possible physiological link with STX1A 
hemizygosity. As the MLXIPL gene, which encodes 
the ChREBP transcription factor that regulates both 
glucose168,169 and lipid metabolism170, is also located 
within the WSCR, both ChREBP and STX1A could 
contribute to the metabolic phenotypes in WS.

Bialleleic missense variation in DNAJC30 was recently  
associated with Leber’s hereditary optic neuro pathy in 
humans171, a mitochondrial condition. Similar features 
have not, to date, been reported in WS. Bialleleic dele
tion of DNAJC30 in mice also produces mitochondrial 
dysfunction and behavioural changes172. More work  
is needed to investigate the impact of isolated hemi
deletion in humans but the potential impact of this gene 
on neurodevelopment should be considered.

Diagnosis, screening and prevention
Clinical diagnosis
WS is a multisystem disorder with a broad but charac
teristic pattern of organ involvement (Fig. 1), including a 
distinctive facial appearance173–175 (Fig. 4). As there is no 
newborn screening for WS, clinical consideration of the 
diagnosis is prompted by the presence of suggestive signs 
and/or symptoms. Below, we outline the most common 
presenting features prompting the consideration of a WS 
diagnosis. Of note, the extent and exact distribution of 
system involvement can vary considerably from patient 
to patient.

Craniofacial differences. Individuals with WS often 
present with facial features that are not typical for their 
family. Prominent features in infants and young chil
dren include a broad forehead, periorbital fullness, flat 
bridge of the nose, full cheeks, long philtrum and a small 
delicate chin. Adolescents and adults often continue to 
have micrognathia but the face elongates over time, the 
nasal bridge is no longer flat and there is fullness of  
the lips with a wide mouth (especially appreciated when 
smiling). Children and adults of different ethnic back
grounds from Brazil with molecularly confirmed WS are 
depicted in Fig. 4.

Cardiovascular anomalies. Cardiovascular disease in 
WS typically presents with a heart murmur. Evaluation in 
children most commonly reveals SVAS and/or stenosis of 
the main or branch pulmonary arteries. Pulmonary vas
cular disease is often less prominent in older individuals 
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with WS. Other WS cardiovascular features, such as ste
nosis in other vessels, septal defects, hypertension, vas
cular stiffness or ECG abnormalities, are generally not 
the reason for referral but may be present at the time of 
diagnosis.

Hypercalcaemia. Actionable hypercalcaemia (serum 
calcium >12.0 mg/dl) is seen in 5–10% of children with 
WS and, when present, usually occurs between 6 and 
30 months of age176. While some children with hyper
calcaemia are irritable and show poor oral intake, other 
cases are detected incidentally by laboratory testing.

Growth concerns. On average, children and adults with 
WS are shorter than expected for age177. Once a diagnosis 
is made, WSspecific growth charts are available for plot
ting children’s expected growth178,179. In addition, many 
infants with WS exhibit prolonged colic, may have dif
ficulty feeding due to oral motor delays or sensitivities, 
and have difficulty gaining weight.

Developmental delay, intellectual disability and behav-
ioural profile. Developmental delay is almost universal 
and 75% of older children and adults with WS have intel
lectual disability (IQ <70)178, with most other individuals 

2 months 1 year 2 years

10 years9 years9 years8 years8 years7 years7 years7 years7 years 10 years

43 years42 years41 years40 years39 years27 years22 years21 years21 years 52 years

15 years15 years15 years14 years14 years14 years13 years13 years11 years 15 years

19 years19 years18 years18 years17 years17 years17 years17 years16 years 21 years

6 years5 years4 years4 years2 years2 years 6 years

Fig. 4 | Facial features of children and adults with Williams syndrome of different ethnic backgrounds. Facial photos 
of individuals of different racial and/or ethnic backgrounds aged 2 months to 52 years with molecularly confirmed 
Williams syndrome. Distinctive features in infants and children include broad forehead, peri-orbital fullness, flat bridge of 
the nose, full cheeks, long philtrum and a small delicate chin. Many adolescents and adults continue to have micrognathia 
and the face often elongates over time while the nasal bridge is no longer flat and there is fullness of the lips with a wide 
mouth (especially appreciated when smiling). Parents or caregivers for all individuals signed consent for the publication of 
their family member’s image. The presence of more male than female photos in adolescents and adults solely reflects the 
availability of patients.
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displaying borderline IQ (70–79) and/or more specific 
neuropsychological impairments13,14.

Many experienced parents almost immediately notice 
differences from typically developing infants but other 
parents may not become concerned until they realize 
their child with WS is not meeting motor or language 
milestones (Fig. 5). Features of ASD may also lead to 
referral.

Differential diagnosis
It is important to distinguish WS from other syndromes 
with overlapping features. Certain highly suggestive fea
tures (such as SVAS, hypercalcemia and characteristic 
facial features) exist that, when seen in combination by 
an experienced examiner, readily yield a correct clinical 
diagnosis of WS. Although a few other disorders (such as 
fetal alcohol syndrome, rasopathies and FG syndrome) 
are evocative of WS, in that they have a similar pattern 
of organ involvement, detailed examination of their 
specific features reveals distinct differences from WS. 
However, some individuals come to medical attention 
owing to a single prominent feature. Depending on the 
specific presenting symptom, the differential diagnosis 

varies; Supplementary Table 1 is presented to aid practi
tioners in that setting. A clinical suspicion of WS should 
always be confirmed with genetic testing (see below).

Testing approaches
The most widely used laboratory methods available 
to detect the 7q11.23 microdeletion include FISH,  
polymorphic microsatellite markers, multiplex ligation 
dependent probe amplification and chromosomal 
microarray analysis (CMA) (Table 1). CMA is the only 
current method that does not require the clinician to 
suspect a specific diagnosis of WS prior to testing. In 
addition to providing mapping for deletion boundaries 
and offering the ability to detect atypical deletions, CMA 
can also identify additional CNV events elsewhere in the 
genome. Multiplex ligationdependent probe amplifica
tion and polymorphic microsatellite markers are often 
used in lowincome and middleincome countries owing 
to their lower cost than FISH and CMA22,23,180,181.

Newer technologies, such as facial recognition soft
ware182–184, may help focus the differential diagnosis and 
have been evaluated in individuals from various racial 
and ethnic backgrounds; the diagnostic precision of 
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8

12

16

4.6

5.9

7.5

16

24

30

10

12

14.4

7

8.5

10

3

4.5

6.5
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8

13

16

24

32

>48

15

19

26

24

31

>48

<16

18

26

29

35

>48

<16

22

>30

Expressive vocabulary of 5 words
(used spontaneously)

Expressive vocabulary of 100 words
(used spontaneously)

Spontaneous word combinations
(not frozen phrases)

Phrases that include morphology
(word endings)

Sits without support

Walks alone

Reaches for an object

Points with index finger
extended to indicate

interest

Stacks 3 blocks

Simple pretend play
(e.g. feed baby doll or stuffed animal)

Williams syndrome Typical development Median

Age (months)

Fig. 5 | Developmental milestones for very young children with Williams syndrome. Median ages (in months) and 90th 
and 10th percentiles for attainment of various gross motor, fine motor, cognitive and language milestones by very young 
children with Williams syndrome relative to typically developing children154,296–304. Numbers above the dashed line indicate 
median age; numbers within the bars indicate the 10th (left) and 90th (right) percentiles. aNot possible from the available 
literature to determine the 10th and 90th percentiles for typically developing children.
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the software will likely continue to improve over time. 
Additional testing (gene sequencing or trinucleotide 
repeat expansion testing) may be indicated based on 
the differential diagnosis (Supplementary Table 1).  
In the future, wholegenome sequencing may provide 
CNV and singlenucleotide polymorphism detection in 
a single test that will simultaneously assess for WS and 
other possible differential diagnoses.

Recurrence risk
If a parent has WS, the risk of WS in offspring is 50% for 
each pregnancy. However, owing to the complex medical 
and neurodevelopmental challenges associated with WS, 
few adults with WS have children. The recurrence risk 
for couples where neither parent has clinical findings of 
WS is extremely low185, since the 7q11.23 microdeletion 
arises de novo in the vast majority of cases. For these 
couples, parental testing for a 7q11.23 microdeletion 
is not indicated and neither is invasive prenatal testing 
of subsequent pregnancies (although many parents opt 
for the latter, especially in countries where molecular 
diagnostic testing is widely available). However, there 

are rare reports of recurrence in phenotypically normal 
parents. This recurrence is likely attributed to parental 
mosaicism186 or to one parent carrying an inversion of 
the WSCR185. The inversion has been associated with an 
approximately fivefold increase in the risk of having a 
child with WS in each pregnancy; nevertheless, testing 
for the presence of inversion in phenotypically normal 
parents is not recommended because their recurrence 
risk — despite being five times higher — remains well 
below 0.1%42,44,185.

Pregnancy and prenatal testing
Limited clinical information exists on pregnancies in 
women with WS187,188. A review of this literature sug
gests that mothers and fetuses (affected by WS or not) 
may require close monitoring, especially with regard to 
the maternal cardiovascular system. In addition, there 
is no routine prenatal test that adequately screens for 
WS, although prenatal ultrasonography can sometimes 
detect relevant fetal anomalies. The most common pre
natal finding is nonspecific, namely intrauterine growth 
retardation189. Various cardiovascular anomalies can 

Table 1 | Overview of methods for diagnosing WS

Method Current advantages Current disadvantages

Available methods

Microsatellite markers Low cost May be uninformative

Need of trio sample

Multiplex ligation- 
dependent probe 
amplification

Low cost

Highly effective

Possibility of detecting other microdeletions or 
duplications (as determined by probe coverage)

Requires ordering provider to suspect WS 
to order correct probe

Fluorescence in situ 
hybridization

High sensitivity

May detect translocations (depending on 
availability of probe coverage)

Higher cost

False negative for smaller deletions

Not possible to determine deletion size

Requires ordering provider to suspect WS 
to order correct probe

Chromosomal 
microarray

High positivity

Able to determine deletion size

Able to determine CNVs elsewhere in the genome

Ordering provider does not need to suspect WS 
to order this test

Highest cost of currently available tests

Cannot detect balanced translocation or 
inversion

Emerging methods

Non-invasive prenatal 
testing

Prenatal diagnosis of aneuploidies and large 
deletions or duplications

Low resolution (detects deletions >3 Mb)

Facial recognition 
software

Cost varies, with some free software available 
online

Diagnosis is limited by the number of 
photographs available in the database

May have different efficacy based on race 
or ethnicity of patient

Whole-exome 
sequencing

Deletion detection performed in research 
settings

Currently used clinically for single- 
nucleotide variants

High cost

Low accuracy for deletion detection

Whole-genome 
sequencing

Combined single-nucleotide variant and CNV 
or structural variant detection performed in 
research settings

High cost

Slow turnaround in most settings

WS, Williams syndrome; CNV, copy number variant; Mb, megabase pairs.

10 | Article citation ID:            (2021) 7:42  www.nature.com/nrdp

P r i m e r

0123456789();: 



also be seen and range from nonspecific (for example, 
ventricular septal defect) to nearly pathognomonic for 
elastin arteriopathy (for example, SVAS, although this 
finding is quite difficult to make by prenatal ultrasonog
raphy)165. The prenatal detection of growth retardation 
combined with any cardiovascular defect may warrant 
performing highresolution prenatal ultrasonography 
and genetic testing.

Noninvasive prenatal testing (NIPT) involves the 
sequencing of fetal DNA circulating in the maternal 
circulation and can detect common fetal chromosomal 
aneuploidies in the first trimester. Currently, as even 
enhanced NIPT platforms can only detect deletions of 
>3 Mb, they cannot be used to diagnose WS189. However, 
further technical advances in the NIPT technology 
are likely to enhance prenatal diagnosis and therefore 
affect the epidemiology of WS in the future. In addition, 
wholegenome sequencing may eventually be utilized 
to perform combined singlenucleotide polymorphism, 
copy number variant and structural variant detection in 
fetal samples. Prenatal diagnosis offers the opportunity to 
provide genetic counselling to families sooner, allowing 
them to avoid a diagnostic odyssey that can potentially 
last months and years after the child’s birth.

Management
The management of various aspects of WS has been 
extensively outlined in numerous research studies, 
reviews and guidelines173,174,176–178,190–195. Here, we focus 
on the management of three key areas where better ther
apeutics would have the greatest potential to improve 
health outcomes: elastinassociated vasculopathy, hyper
tension, and intellectual disability, social functioning 
and anxiety.

Elastin-associated vasculopathy
As mentioned previously, individuals with elastin insuf
ficiency can develop focal stenosis and other vascular 
features. Vascular disease severity varies among indi
viduals with WS, with ~20% requiring intervention for 
SVAS, for example, while 30–40% have little to no ste
nosis in this location. At present, large vessel stenosis is 
predominantly managed surgically. To alleviate SVAS, 
patch aortoplasty is the most common approach196 and 
has undergone several technical improvements over 
time, evolving from the singlepatch method197,198 to the 
pantaloonshaped patch that enlarges the aorta and two 
aortic sinuses199. The most advanced method, which 
involves applying a patch to each of the three aortic 
sinuses200, exhibits notably lower residual pressure gra
dients and reoperation rates201 than the singlepatch 
approach. Stenoses of pulmonary arteries can be treated 
with angioplasty but catheterbased interventions on 
other arteries are often unsuccessful11,90,202. The surveil
lance of stenosis occurs through regular examinations 
by a cardiologist and associated imaging, and should 
continue throughout an individual’s lifetime.

Individuals with WS experience increased rates of 
cardiovascular collapse with and without anaesthesia10,12, 
although the mechanism of this phenomenon is not 
completely understood. Young individuals and those 
with the most severe cardiovascular features (that is, 

biventricular outflow tract obstruction10) seem to have 
the highest risk, although some individuals with only 
minimal stenosis suffered sudden cardiac death in the 
setting of anaesthesia. This severe outcome may be 
influenced by various risk factors, including anatomical 
anomaly of the coronaries and a reduction in perfusion 
pressure at induction and/or maintenance of anaesthe
sia. Therefore, careful preoperative screening should be 
performed to assess the anaesthesiaassociated cardio
vascular risk and the administration of intraoperative 
anaesthesia should ideally be provided by an anaesthesia 
team with knowledge of WS anaesthesia risks93–95,203,204. 
Care should be taken not to acutely lower blood pressure 
at induction of anaesthesia in order to maintain adequate 
perfusion of the coronaries during this sensitive time.

Studies suggest that novel pharmacological therapies  
may improve elastinassociated vasculopathy. Minoxidil, 
an ATPdependent potassium channel opener, has 
received considerable attention based on evidence that 
it increased elastin production in cellular studies205 and  
in animal models206,207 of genetic elastin deficiency 
and that it ameliorated the agerelated degeneration 
of elastic fibres in mice208,209. However, a randomized, 
doubleblind, placebocontrolled trial (NCT00876200) 
investigating the effect of a yearlong minoxidil treat
ment in 8 treated subjects with WS failed to show 
improvement in the primary outcome measure (carotid 
intimamedia thickness)210. This trial did show an 
increase in lumen size (a secondary finding, in line with 
previous mouse studies207) over the same time inter
val, along with an expected common adverse effect of 
hypertrichosis210.

Alternative therapeutic approaches may target various 
regulatory pathways that influence elastin expression. 
For example, both the coding region and the 3′ untrans
lated region of the ELN mRNA are enriched in binding 
sites for miR29 and miR15, two microRNAs that are 
upregulated in the late postnatal aorta, at the same time 
that the level of mature ELN mRNA decreases82. The 
antagonism of miR29 increases elastin expression in 
haploinsufficient cells and bioengineered vessels211.

Hypertension
Elastin insufficiency is also associated with hyperten
sion but the risk of clinically significant blood pressure 
increases is modified by deletion size and NCF1 gene 
dosage91,116. Blood pressure should be measured in both 
arms and at least one leg due to possible right arm flow 
acceleration (the socalled Coanda effect) and/or coarcta
tion of the aorta212. If consistent blood pressure elevations 
or pressure differentials (in the arms or as an arm–leg  
discrepancy, respectively) are detected, additional imaging 
of the heart and ascending aorta (by echocardiography) 
and the renal/abdominal vasculature (by Doppler ultra
sonography, CT angiography or MRI/MR angiography) 
should be considered (when available), to assess the pres
ence of focal or longsegment stenosis that affects renal 
perfusion and may benefit from surgical intervention5,9. 
Auscultation of the abdomen can also reveal a bruit 
(abnormal sound) in the region of the stenosis.

Blood pressure elevation often starts in childhood and 
increases in frequency with age8,9,116,213. Unlike stenosis,  
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most cases of hypertension are treated pharmacol
ogically5,8. Currently, there is no expert consensus on 
the best antihypertensive medication for individuals 
with WS214. Similarly, work in Eln+/– mice revealed no 
superior drug class for the treatment of elastinmediated 
hypertension215. However, because blood pressure influ
ences lumen size, which in turn affects endorgan blood 
flow, care must be taken not to decrease pressure to the 
extent that lumen size, and therefore endorgan blood 
flow, is pathologically diminished.

For this reason, among others, diuretics may not be 
the ideal or initial choice for blood pressure management 
in individuals with WS. In addition, when renovascular 
causes of hypertension are suspected, angiotensin 
receptor blockers and angiotensinconverting enzyme 
inhibitors should be used with caution. As the risk 
of hypertension has been linked to ROS production 
through the NOX signalling pathway, potential thera
peutic strategies could include treatments that limit ROS 
production or affect signalling through ROS74,118,216.

Intellectual and social functioning
The deletion of multiple genes within the WSCR likely con
tribute to intellectual disability, altered social functioning 
and anxiety, although the roles of GTF2I and GTF2IRD1 
(as outlined above) are the best described to date. WS 
is associated with developmental delay (the expected 

developmental milestones are shown in Fig. 5). The delays 
typically lead to mildtomoderate intellectual disabil
ity, although a few individuals have severe intellectual  
disability or, at the other extreme, average intellectual 
ability14,217. This overall level of ability masks a pheno
typic pattern of strengths and weaknesses relative to 
expectations for the overall level of intellectual ability. 
In general, language and nonverbal reasoning abilities 
are stronger than expected for overall intellectual ability, 
whereas visuospatial construction (for example, hand
writing and block construction) is considerably weaker 
than expected13,14,218. Visuospatial construction is facili
tated by visual processing regions. Interestingly, research 
using restingstate functional MRI showed that, for chil
dren in the general population, the intraparietal sulcus is 
functionally connected to more superioranterior visual 
processing regions, whereas it is instead connected to 
social regions in children with WS160. The lack of this 
specific functional connection in individuals with WS 
contributes to their considerable weakness in visuo
spatial construction219. A more detailed description of the  
pattern of relative strengths and weaknesses within  
the language domain is provided in Table 2.

Current information indicates that cognitive ability 
remains stable at least to midadulthood220–223. There is 
a possibility of IQ decline in older adults34, but the data 
sets are limited. WS is also associated with a characteristic 

Table 2 | Pattern of relative strengths and weaknesses in individuals with Williams syndromea

Category Ability Details Level relative to overall 
intellectual ability

General 
pattern

Verbal Vocabulary breadth and verbal analogies Stronger than expected

Non-verbal 
reasoning

Matrix reasoning and pattern completion Stronger than expected

Visuospatial 
construction

Drawing, writing and block construction Considerably weaker 
than expected

Language 
profile

Phonological 
processing

Knowledge of the sound structure of language and 
ability to manipulate that structure

Stronger than expected

Vocabulary breadth Concrete vocabulary, picture identification  
and naming

Stronger than expected

Verbal short-term 
memory

Ability to repeat back what was said verbatim Stronger than expected

Grammatical ability Ability to speak grammatically and understand 
sentences someone else produced

At the expected level

Verbal working 
memory

Ability to repeat back what was said in a different order 
(for example, in the reverse order) from the original

At the expected level

Vocabulary depth Ability to define words accurately and specifically At the expected level

Relational 
vocabulary

Understanding and use of spatial, temporal, and 
quantitative concepts and of complex conjunctions 
(for example, however) or disjunctions (for example, 
neither nor)

Considerably weaker 
than expected

Non-literal language Understanding and use of metaphor and irony Considerably weaker 
than expected

Discourse skills Event sequencing, asking and answering questions 
appropriately, maintaining the conversational topic

Considerably weaker 
than expected

Comprehension 
monitoring

Evaluating whether one understood what was said or 
read and then taking appropriate action if one had not 
understood

Considerably weaker 
than expected

aStrengths and weaknesses relative to overall intellectual ability for broad categories of intellectual ability and within the language 
domain.
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behavioural profile that is consistent across both Western 
and Eastern cultures224. At its most basic level, this pro
file includes gregariousness and hypersociability (or 
‘overfriendliness’), accompanied by attention problems  
(often meeting diagnostic criteria for attentiondeficit/
hyperactivity disorder), social problems, anxiety and emo
tional overreactivity15,16,225–229. Mastery motivation (that 
is, willingness to persist on a task one finds moderately 
difficult) is typically very limited14,227. The most common 
psychiatric problems associated with WS and estimates 
of their prevalence based on meeting formal diagnos
tic criteria outlined in the Diagnostic and Statistical 
Manual of Mental Disorders, 4th edition230, are delineated  
in Fig. 6.

In most cases, the previously described learning and 
developmental differences are addressed by the school 
system through specialized education and therapy ser
vices, which are outlined below. In general, physical, 
occupational, and speech and language therapy are 
recom mended for infants through schoolaged children 
in the USA178,231 and in Australia192. By contrast, accord
ing to a parent survey in the UK, only 20–40% of school 
children with WS receive these services232. The behav
ioural and psychiatric components of WS are managed 
with the help of structural and environmental supports 
at home and in school and vocational settings, including 
counselling and behavioural therapies14,156,178,233. For indi
viduals whose symptoms greatly affect their daily func
tioning and quality of life (QOL), referral to a psychiatrist 
for the consideration of pharmacological intervention 

may be indicated178. The anxiety associated with WS has 
been particularly difficult to treat. Trials are needed to 
identify appropriate therapeutics for anxiety, although, as 
has been shown for typically developing individuals, cog
nitive behaviour therapy seems promising as an effective 
treatment for anxiety in WS234,235. The same medication 
classes available for anxiolysis in the general population 
have been studied in small series of individuals with 
WS236,237 and are already widely used in clinical practice 
but result in varying symptom relief. Furthermore, the 
risk–benefit ratio may be more unfavourable for some 
of these medications in individuals with WS (reviewed 
elsewhere238). Specifically, anxiety, mood, cardiac func
tion and blood pressure all need to be monitored given 
the overlap between the common adverse effects of 
attentiondeficit/hyperactivity disorder medication  
in the general population and the psychological and 
physical difficulties associated with WS.

Educational and vocational provision
In highincome countries, a large proportion of pri
mary schoolaged children with WS are educated in 
mainstream schools and spend at least part of the day 
in classes with typically developing agemates; these 
proportions decrease considerably for secondary 
school232,239. Although there are no data specifically for 
children with WS, in lowincome and middleincome 
countries, school attendance is much less common  
for children with disabilities than for typically develop
ing children240 due not only to financial difficulties but 

Preschool (age 3–5 years)
• Anxiety disorder (45–60%)
• ADHD (55%)
• Autism spectrum disorder (12–20%)a

• Obsessive compulsive disorder (0%)
• Oppositional defiant disorder (5%)
• No mental health diagnosis (35%)

Adulthood (≥18 years)
• Anxiety disorder (40–65%)
• Mood disorder (25%)
• Autism spectrum disorder (12–20%)a 
• Obsessive compulsive disorder (5%)
• Psychotic illness (5%)
• Adjustment disorder (10%)
• No mental health diagnosis (10–30%) 

Childhood and adolescence (age 6–17 years)
• Anxiety disorder (37–60%)
• Mood disorder (0–3%)
• ADHD (33–80%)
• Autism spectrum disorder (12–20%)a 
• Obsessive compulsive disorder (3–5%)
• Oppositional defiant disorder (5%)
• No mental health diagnosis (11–37%)

Reduced social and economic opportunity

Limited
educational 
achievement

Intellectual disability

Genetic differences
(7q11.23 deletion including 25–27 protein-coding genes)

Selective and/or
restricted

social experience

Atypical interaction

Neurological differences

Fig. 6 | Prevalence of psychiatric diagnoses in individuals with Williams syndrome throughout the lifespan.  
The genetic deletion in Williams syndrome (WS) has cascading effects on social, educational and vocational opportunities  
and on psychopathology. The estimated prevalence of psychiatric disorders in preschool-aged children, school-aged 
children and adolescents, and adults with WS154,213,267,305,306 is depicted. Studies with participants over a wide age range 
that did not report results separately for children and adults were excluded237,307–309. The term ‘anxiety disorders’ includes 
generalized anxiety disorder, specific phobia, separation anxiety or social anxiety, and panic disorder with agoraphobia. 
aMost individuals with WS who have autism spectrum disorder fit in Wing and Gould’s293 active-but-odd subtype of autism 
spectrum disorder233 rather than the aloof subtype. ADHD, attention-deficit/hyperactivity disorder. Adapted from reF.310, 
Springer Nature Limited.
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also to the discriminatory and negative views of persons 
with intellectual disability241.

Postsecondary education for individuals with WS 
is very limited worldwide, although opportunities are 
increasing in some highincome countries. In a US sur
vey whose respondents were, on average, uppermiddle 
class, 29% of individuals with WS had attended a post
secondary education programme242. These programmes 
typically focus on combinations of academics, voca
tional training (including job placement and coaching) 
and independent living skills. After completing school, 
most adults with WS continue to live with their parent 
or another relative; <10% live independently242,243. Only 
38–54% of adults are working at least parttime, gener
ally in a special employment arrangement, either for pay 
or as a volunteer242,243.

Within the academic sphere, reading skills are con
siderably stronger than mathematics skills13,244 and range 
from an inability to read at all to reading comprehension 
at age or grade level244–247. About 30% of adolescents and 
adults with WS have functional reading capability245. 
Children who were taught to read using systematic 
phonics instruction, which emphasizes letter–sound 
relations, read and comprehend significantly better than 
those taught using other instructional approaches247,248. 
There has been no research on written composition and 
very little is known about the mathematical abilities of 
individuals with WS249.

Within the adaptive behaviour domain, socializa
tion and communication skills are stronger than daily 
living and motor skills for children and adolescents with 
WS250. In longitudinal studies, adaptive behaviour stand
ard scores declined significantly during childhood251 
and in adulthood222, owing to the stagnation or failure 
to increase adaptive skills at the rate needed to maintain 
a consistent standard score over time. For adolescents 
and adults with WS, adaptive behaviour is more limited 
than expected for their IQ252,253.

High but realistic parental expectations combined 
with better behavioural regulation235 and higher levels 
of mastery motivation are expected to positively affect 
both adaptive behaviour and academic achievement13. 
Even so, in a survey of teachers, most indicated that they 
were not given adequate resources to teach children with 
WS239 and most parents surveyed thought their child’s 
teachers had little knowledge about WS239. Much more 
research is needed on effective instructional strategies 
for individuals with WS at all educational levels254.

Quality of life
The combination of intellectual disability, medical 
problems, and behavioural, psychological and adap
tive impairments leads to considerable limitations on 
QOL in individuals with WS. Parents and teachers of 
children with WS report difficulties with peers, includ
ing problems establishing and maintaining friendships 
and increased social exclusion or isolation255. Although 
social vulnerability is high, selfawareness is limited256. 
Seventythree percent of parents reported victimiza
tion of their child257, with the social interaction style of 
individuals with WS contributing significantly to their 
social vulnerability258. Even adolescents and adults with 

WS are typically not cognizant of stranger danger259,260. 
Intervention studies addressing these issues259,261 are both 
rare and crucial229.

Almost all children with WS require multiple encoun
ters with the healthcare system for the management  
of medical or surgical problems262. These encounters 
place a financial and emotional burden on the individ
uals with WS and their families263 and often contrib
ute to anticipatory anxiety about medical encounters 
and procedures264. Several studies of adults with WS  
≥30 years of age demonstrated an increased frequency, 
variety and severity of medical morbidities33,34,213 and 
this trajectory accelerates among those >65 years of age 
(authors’ personal observation).

Prominent adult issues include cardiovascular dis
ease, obesity (with/without lipoedema), diabetes mel
litus, incontinence, hearing loss, consequences of poor 
oral health, gastrointestinal problems (including diver
ticulitis), decreased bone mineral density and sleep 
apnoea174,213. Psychiatric concerns are often paramount. 
Health issues such as these may result in narrowed resi
dential and vocational placements as well as in restricted 
mobility and physical activity and, collectively, they 
promote further social isolation. Medical complications 
require focused management based on established 
guidelines, whereas general health could be improved 
by participation in programmes that promote healthy 
eating and increasing physical exercise activity to the 
recommended adult levels265,266.

The presence of a child with WS may affect the QOL 
of other family members. Both generalized anxiety 
disorder267 and borderline or clinically significant lev
els of stress268,269 occur in a significantly higher propor
tion of mothers of children with WS than expected for 
sameaged women in the general population. Sensory 
modulation problems are very common among chil
dren with WS and are associated with a more difficult 
temperament, more limited adaptive behaviour, emo
tion regulation difficulties and behavioural problems270. 
In turn, child behavioural problems (especially exter
nalizing problems) contribute to increased maternal 
stress268,271 or challenges with raising the child (owing 
to, for example, the child’s difficulties with social skills 
or obsessions)272. The discrepancy between the general 
perception that children with WS are happy and have 
‘easy’ temperaments and the reality that most children 
with WS have relatively difficult temperaments is in itself 
likely to increase maternal stress227. Worries regarding 
the child’s future are very common among family mem
bers and mothers in particular232,272,273. At the same time, 
most mothers also reported positive aspects of having a 
child with WS, including that the child brought joy and 
changed the mother’s outlook on life272 (box 1).

Outlook
Much has been learned about WS since its initial 
description but important questions remain (box 2). 
These questions centre on three major themes: mole
cular mechanisms of disease, interindividual variability 
and effective treatment strategies. A more complete 
understanding of the genes and pathways contributing 
to the phenotypes of individuals with WS would allow 
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clinicians to move beyond symptom management and to 
instead use precisely targeted therapies to improve organ 
function and ultimately health outcomes.

Molecular mechanisms of disease
To date, only ELN, GTF2I and GTF2IRD1 have been 
definitively linked to key phenotypes that are identifi
able in individuals with WS but, even for these genes,  

a significant knowledge gap between disease phenotype 
and gene function remains. For example, the published 
literature has not yet clarified whether the global vas
cular narrowing seen in WS is driven by changes in cell 
proliferation99, radial growth of the vessel102 or altera
tions in cell–matrix interactions. In addition, the charac
teristic hourglasstype stenosis feature in WS seems to be 
driven by entirely different mechanisms than the more 
general narrow and stiff vessel pathology seen through
out the rest of the vasculature7,97. While for GTF2I  
and GTF2IRD1 clear effects on brain development and 
function are evident, the direct effect of reduced gene 
products on neural circuits, white matter properties274, 
developmental timing and brain activity is unknown.

To answer these questions, further studies on the 
roles of individual genes in human pathophysiology, at 
the cellular and molecular level, and in model systems 
are needed. In humans, a traditional approach has been 
to clinically characterize individuals with smaller WSCR 
deletions in an effort to create more specificity for the 
traits associated with each gene (Fig. 2). Currently, clini
cal exome and wholegenome sequencing are being used 
to identify rare singlegene variations in individuals with 
phenotypes that overlap with WS (a phenotypetogene 
approach). In the future, the move towards bigdata and 
genotypefirst methods (a genetophenotype approach) 
may offer new hope in the identification and further 
refinement of genotype–phenotype relationships that 
are part of the complex multisystem disorder of WS.

Further clarification of gene function can be obtained 
from studies in model systems. Cell systems offer ease of 
manipulation and provide precise ways to study protein– 
protein interactions and gene expression. However, 
they lack much of the complexity (for example, multiple 
cell types, tissue movement and endocrine signalling) 
needed to truly model human disease. Similarly, animal 
models (usually mice) may imperfectly match human 
disease outcomes; for example, the Eln+/– mouse does 
not have SVAS and, in the case of cognitive conditions, 
mouse behaviours may incompletely or inaccurately 
correspond to human behaviours. The advent of iPSCs, 
tissue engineering and ‘organs in a dish’ may offer the 
potential to bridge some of the gaps that are present in 
traditional cell culture systems68,69,275–277. As in all dis
ease modelling, the biggest challenge lies in the ability 
of the in vitro system to truly mimic the complex in vivo 
environment. Brain organoids have shown promise for 
modelling developmental disorders such as autism 
and epilepsy278,279. Vascular organoids280 and numerous 
tissueengineering approaches281 are being applied to the 
study of blood vessels. Progress is being made but it has 
been difficult to design complex vascular tissues that 
deposit mechanically competent and mature elastin282,283. 
Rapid improvement in these systems is expected in the 
coming years as more precise genetic approaches to 
adapting both cellular and animal systems facilitate the 
study of specific outcomes.

Interindividual variability
Phenotypic variation is readily apparent in WS despite 
the vast majority of individuals carrying the typical  
1.55–1.83 Mb WS deletion. Currently, the mechanisms 

Box 1 | Perspective of a patient with Williams syndrome and their family

Molly (not her real name) is a 30-year-old woman with Williams syndrome who lives with 
her parents in a rural town in Australia. She has mild-to-moderate intellectual disability 
and the typical Williams syndrome personality. She completed school in a mainstream 
setting for the first six years, then moved to a special school. She currently works 3 days a 
week in sheltered employment after failed attempts to work in mainstream employment 
due to bullying. Molly enjoys music, softball and line dancing. Molly has struggled with 
many of the medical and psychological difficulties associated with Williams syndrome 
but, due to her determined nature and strong family support, she has made many 
wonderful life achievements. Please see Supplementary Box 2 for the full interview.

Interviewer: Do you feel that others treat you any differently because you 
have Williams syndrome?
• Molly: The way people talk to you is different and they talk to mum instead of me … 

about my medical things … and I am like: “Hello, I am over here. Mum doesn’t have 
Williams syndrome. I do”.

Interviewer: What are the good things about having Williams syndrome?
• Molly: I make people laugh and feel good. At home I am demanding. I love older 

people and their stories. I love to hear what they were up to back in the day.

Interviewer: What are the not so good/hard things about having Williams 
syndrome?
• Molly: Lots of people don’t know about Williams syndrome. Most doctors don’t know 

about Williams syndrome. When I go to hospital, I always take an information sheet 
[about Williams syndrome].

• I get bullied a lot. I think because of the way … oh this makes me feel sad … [now teary] 
… I think because of the way I act some people don’t realize it is hard to always be happy.

• I know this might sound stupid, but I can’t tie my shoelaces. I wear shoes with 
elasticated shoelaces.

Interviewer: What is the biggest thing that having a child with Williams 
syndrome has taught you?
• Parent: The biggest thing we have learnt is that a person with Williams syndrome is no 

different to you and me. We all have different personalities, have different needs and 
process information differently. We have a greater level of acceptance and empathy 
by having a person with Williams syndrome in our lives.

Interviewer: What have been the major challenges associated with having a 
daughter with Williams syndrome?
• Parent: At first it is hectic. Appointments are ongoing and seem to be never-ending. 

You are always planning for the next stage. Learning how to feed and care for your 
child with Williams syndrome is the first step. Then, moving on to therapy and the first 
stage of learning with early intervention and transition to school.

• Also, stranger danger is a big concern as Molly accepts everyone as her best friend.

Interviewer: What is your take-home message to new parents of a child with 
Williams syndrome?
• Parent: Don’t be afraid to ask for support especially in the early years as there are 

times that you will be overwhelmed but, as time goes on, the positives can outweigh 
the negatives.

Interviewer: What are the three main points you want to make about Williams 
syndrome?
• Parent: Williams syndrome is challenging but can be rewarding. The person with 

Williams syndrome is just like you and I but processes information slower. We just 
need to be more accepting, tolerant, non-judgmental. Treat a person with Williams 
syndrome with respect.
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underlying this variability are mostly unknown. It is 
likely that both environmental factors and genetic modi
fiers contribute to the overall penetrance of specific signs 
and symptoms in an individual with WS.

The study of polygenic risk is still in its relative 
infancy but offers essential insight into features of WS 
that overlap with common health conditions in the gen
eral population284,285. Variation in genes that globally 
influence hypertension or IQ, for example, likely act 
together with genes in the WSCR in additive and syner
gistic ways to produce much of the observed variation286. 
In this way, the study of genetic modifiers in individuals 
with microdeletion disorders may offer a shortcut to 
identify relevant disease pathways by acting as a sensi
tivity screen of sorts, with the notable downside being 
the difficulty in acquiring truly robust sample sizes.

Sets of polygenic risk genes for more unique WS 
features (such as SVAS or odynacusis287) are currently 
unavailable but, if identified, they may provide insight 
into targetable pathways that could impact these impor
tant outcomes. For example, ~20% of all individuals with 
WS require surgical correction for SVAS but, if it has 

been established that those who do need surgery have 
a variation in a particular pathway, treatment could be 
targeted to the modifier pathway rather than to elastin 
insufficiency itself. Some work has already been initiated 
in this area29 but larger studies covering a broader racial 
and ethnic distribution are needed.

Other, understudied areas of potential variation include 
epigenetic effects and somatic variation. In addition,  
little is known about how differences in the flanking LCR 
regions, which are difficult to study by current shortread 
sequencing methods, may affect disease outcomes. 
Another area requiring further study is the influence of 
environmental factors, prenatally and throughout life, 
on disease outcomes. The gut microbiome, which is 
potentially affected by feeding difficulties, early hospi
talizations and increased medication use, also deserves 
consideration. Environment and gene–environment  
interactions, in particular, are likely to play a crucial 
role in educational achievement14,245,247,248 and adaptive  
functional outcomes13,223,250.

Effective treatment strategies
Treatment strategies can be designed using a variety of 
approaches: targeting the genes and/or gene products 
themselves, targeting functional pathways and aiming 
to treat disease symptoms and signs. For the genebased 
strategies, CRISPRbased and viral vectorbased gene 
therapy technologies288,289 are currently being studied in 
other rare conditions290,291. However, unlike singlegene 
diseases, microdeletion disorders such as WS offer 
particular challenges that relate to the large size of the 
material to be delivered and the sheer number of loca
tions where the genes would need to be targeted to alter 
the relevant phenotypes. It is possible that a subset of 
genes could be delivered using the methods previously 
described, which may improve the efficiency of deliv
ery and function. However, it is known that the 7q11.23 
duplication syndrome149,292 results from increased dosage 
of at least some of the genes in the WSCR and, there
fore, any therapeutic approach must involve carefully 
regulated gene expression or protein replacement. 
Although the ability to identify and modify target genes, 
either in utero or in the early postnatal stages, offers the 
potential to greatly improve precise treatment in WS, 
much work is required before this strategy becomes 
a reality.

In the coming years, therapies are expected based 
on individual genes or pathways that are known to be 
important for influencing phenotype in WS. Studies in  
mouse models, for example, suggest that antimicroRNAs 
(such as antimiR29a) may be useful for increasing elas
tin deposition211 and that influencing smooth muscle 
cell behaviour using inhibitors of mTOR106 or integrin 
β3 (reF.101) could improve the vascular features of WS. 
Moreover, new pharmacological strategies targeting 
myelination have been proposed for improving neural 
outcomes143. However, each of these potential strategies 
comes with challenges in delivery, specificity or longevity.  
For example, miR29a regulates multiple transcripts; 
thus, although antimiR29a administration may lead 
to increased elastin message stability (and therefore to  
increased translation)211, other transcripts bound by 

Box 2 | Key questions for future work in Williams syndrome

Long-term health in individuals with Williams syndrome (WS)
• How do health needs change for individuals with WS across the lifespan? What 

recommendations can be made to optimize the health of older individuals with WS?

• Do different pathologies arise in WS at different developmental stages and are any 
reversible? If treatments are designed targeting early processes, will this ‘normalize’ 
future outcomes or will it be necessary to target multiple stages and processes?

Phenotypic variability
• What are the biological and environmental contributors to variability in outcomes  

in WS?

• How do the ~20 WS critical region genes without a specific phenotype designation 
affect health and development in people with WS? How should the combinatorial 
effects of multiple genes on disease variability be assessed?

• How does variability in WS critical region genes contribute to phenotypic variability 
in the general population?

Disease mechanism
• What are the developmental neuropathological mechanisms underlying the social 

and anxiety-related behaviour impairments in WS?

• What factors impact the transcription, translation and deposition of elastin? Can 
those genes or pathways be harnessed to appropriately re-initiate elastin deposition 
outside of its normal developmental window?

• What underlies metabolic differences in WS, such as glucose dysregulation, aberrant 
growth and aberrant body composition? How do changes in the genes contributing 
to these phenotypes affect the health of people with and without WS?

Interventions and treatment
• What interventions (medical, psychological or behavioural) would best improve the 

quality of life for people with WS, especially pertaining to anxiety, mastery motivation 
and social vulnerability?

• Should hypertension be aggressively treated in WS? What are the effects on 
short-term end-organ perfusion and longer-term organ function?

• What risk factors for adverse anaesthesia events need further refinement, such that 
management guidelines can be generated and widely shared?

Research priorities for WS
• How can resources be developed to facilitate collaborative data collection and 

treatment trial coordination to optimize the delivery of new treatments for people 
with WS?
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miR29a may also be affected, potentially leading to 
other complications. The development of additional 
(nonrodent) WS models may be useful preclinical 
modalities prior to the initiation of human trials. As 
people with WS retain one copy of each gene from the 
WSCR, future studies could be aimed at developing 
methods to target and upregulate the expression of the 
remaining allele.

In addition, patientderived iPSCs may soon offer 
platforms through which to test novel therapeutics for 
impact on the unique WS transcriptional pathways and 
phenotypes. Initial investigations incorporating this 
technology have been used to screen for medications 
that impact the increased proliferation of smooth muscle 
cells seen in WS105. Rather than a goal of preventing ste
nosis, future studies that focus on resolving or reducing 
existing stenoses may be more relevant to treatment and 
lead to improved clinical outcomes, especially in young 
children who often come to medical attention with 
stenosis already present. When iPSCs or geneedited 
versions thereof are being considered as deliver able  
therapeutics themselves, the timing and delivery  
mechanisms will be critically important.

In the interim, clinicians manage specific symp
toms in individuals with WS (such as hypertension, 
anxiety and hypercalcaemia) using medications and 
interventions that have been developed for these indi
cations in the general population, without knowing if 
the mechanism of disease in WS is the same. For exam
ple, several classes of antihypertensive drugs are availa
ble and monotherapy or polytherapy can reduce blood 
pressure in most individuals with WS. However, the 
targeting of these drugs is not mechanism based and 

formal studies on which medications in these classes 
are best for symptom control in the WS population are 
lacking214. The mechanistic and modifier studies previ
ously defined could help narrow the options needed to 
pursue hypothesisdriven clinical trials. In the near term, 
longitudinal studies and open label and doubleblind 
randomized clinical trials on common and highimpact 
medical and behavioural problems are needed, the find
ings of which could provide valuable clinical algorithms 
to guide treatment.

Moving forward
To improve the health outcomes for people with WS, a 
multifaceted translational approach is needed that brings 
together more investigators with expertise in the range 
of conditions and genes represented in WS. Newer top
ics, such as metabolic and immune differences29,66,190 in 
WS, are also in need of innovators. Funding is required 
to allow for the creation of a large international con
sortium that will collect prospective standardized data 
focused on the most relevant questions in WS and 
will incentivize the broad sharing of data acquired in 
diverse popu lations. Such a consortium will allow the 
more rapid collection and dissemination of natural 
history data that are needed to understand longterm 
outcomes and to choose appropriate endpoints for 
subsequent clinical trials. In addition, biospecimen 
collection can be optimized by the same mechanism. 
Ultimately, clinical trials focusing on therapies are criti
cally needed to increase the QOL of individuals with WS 
and their families.
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