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Abstract

Microglia are the immune cells of the brain, involved in synapse formation, circuit

sculpting, myelination, plasticity, and cognition. Being active players during early

development as well as in adulthood, microglia affect other cells directly by their long

processes and unique receptors and indirectly by secreting growth factors and cyto-

kines. In this review, we discuss the roles of microglia in neurodevelopmental disor-

ders, synaptic plasticity, myelination, and homeostatic conditions throughout human

and mouse development. Within these processes, we specifically focus on the contri-

bution of altered microglial interactions with neurons and oligodendrocytes, altered

cytokine and growth factor activities, and alterations in the complement system. We

conclude by highlighting future perspectives and providing an overview of future

research on microglia.

K E YWORD S

autism, microglia, myelin, neurodevelopmental disorders, synaptic plasticity

1 | MICROGLIA: INNATE IMMUNE CELLS
OF THE CENTRAL NERVOUS SYSTEM

The central nervous system (CNS) consists of neurons—specialized

cells that can receive and transmit chemical or electrical signals

(Laughlin & Sejnowski, 2003), macroglia (astrocytes, oligodendrocytes

[OLs], ependymal cells, and radial glia), and microglia. Macroglia and

microglia maintain the neurons' ionic milieu (Fields et al., 2014; Walz,

Ilschner, Ohlemeyer, Banati, & Kettenmann, 1993), modulate synaptic

activity (Tremblay, Lowery, & Majewska, 2010; Wu, Dissing-Olesen,

MacVicar, & Stevens, 2015), regulate conduction velocity in axons

(Dutta et al., 2018), support neural development (Schafer & Stevens,

2013; Wu et al., 2015), and aid in recovery from CNS injury

(Kreutzberg, 1996; Pineau & Lacroix, 2009). Microglia account for

5–12% of the cells in the CNS (Lawson, Perry, Dri, & Gordon, 1990);

they derive from the yolk sac primitive myeloid progenitors and are

maintained independently of definitive hematopoiesis (Ginhoux et al.,

2010). Microglial cells arise before embryonic day 8 (E8) (Lichanska &

Hume, 2000) and migrate to the brain through the circulatory system

(Nayak, Roth, & McGavern, 2014). Infiltrated microglia take up

residence before the differentiation of other CNS cell types and

become critical regulators of CNS development (Kierdorf et al., 2013;

Ransohoff & Cardona, 2010).

Microglia self-renew via proliferation and are not replaced by

bone marrow-derived cells in the healthy brain (Elmore et al., 2014).

Once in the CNS, microglial cells continually monitor their microenvi-

ronment (Nimmerjahn, Kirchhoff, & Helmchen, 2005) and are impli-

cated in neuroplasticity, host defense, homeostasis, wound healing,

debris scavenging, and peripheral immune cells recruitment (Aloisi,

2001) (Figure 1). Activated microglia have the ability to migrate and

undergo morphological and functional changes in response to a vari-

ety of stimuli, such as cytokines and growth factors (GFs) (Nayak

et al., 2014; Tremblay, Lecours, Samson, Sanchez-Zafra, & Sierra,

2015). The presence of activated microglia has been documented in

a plethora of brain injury and disease conditions in humans

(Ransohoff & Perry, 2009) and in related animal models (Hanisch &

Kettenmann, 2007). In fact, brain pathology that is not associated with

microglial function is difficult to find (Faustino et al., 2011; Kim et al.,

2017; Sapp et al., 2001).
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2 | MICROGLIAL POLARIZATION

Microglia are able to polarize into an activated state, such that their mode

of action is situation-dependent (Ransohoff & Perry, 2009), resulting in

varied and context-dependent microglial transcriptome profiles (Wes,

Holtman, Boddeke, Moller, & Eggen, 2016). Microglial function results

from a combination of variables, such as age, neuropathological condition,

disease stage, and environmental factors (Colonna & Butovsky, 2017;

Gosselin et al., 2017) (Figure 2). Microglia can produce and secrete

proinflammatory cytokines such as interleukin (IL)-1β, IL-6, and tumor

necrosis factor-α (TNF-α), which have been shown to be beneficial during

development (Shigemoto-Mogami, Hoshikawa, Goldman, Sekino, & Sato,

2014) but harmful in several pathological states in the CNS (Kim & Joh,

2006; Patterson, 2015). Conversely, microglia can produce and secrete

anti-inflammatory cytokines and neurotrophic factors, including IL-4,

IL-10, insulin-like growth factor-1 (IGF-1), and brain-derived neurotrophic

factor (BDNF) (Cherry, Olschowka, & O'Banion, 2014). Microglia are

affected by cytokines such as IL-4 and IL-13, leading to suppressed pro-

duction of the proinflammatory cytokines IL-1β, IL-6, and TNF-α, reduced

nitric oxide production, and enhanced tissue remodeling/repair (Colton,

2009). Importantly, microglia may not display a significant bias toward

pro- or anti-inflammatory phenotypes. It is increasingly accepted that this

dichotomy is inadequate to describe microglia in vivo (Ransohoff, 2016).

Many studies have characterized microglia and their roles in dif-

ferent brain pathologies (Perry, Nicoll, & Holmes, 2010; Prinz, Priller,

Sisodia, & Ransohoff, 2011), where activated microglia demonstrate a

marked change in morphology from ramified to amoeboid (Giulian &

Baker, 1986). Once activated, microglia have been implicated in both

protective and destructive functions (Ekdahl et al., 2009; Hanisch &

Kettenmann, 2007), with their action depending on the perceived sig-

nals. Therefore, microglia are equipped with numerous pattern-

recognition receptors (PRRs) (Kigerl, de Rivero Vaccari, Dietrich,

Popovich, & Keane, 2014), such as toll-like receptors (TLRs) and the

mannose receptor expressed on innate immune cells (Barak,

Feldman, & Okun, 2014; Bianchi, 2007).

To perform their diverse functions, microglia express all types of

TLRs, as shown in mice (Olson & Miller, 2004), rats (Zhang et al.,

2013), and humans (Barak et al., 2014; Bsibsi, Ravid, Gveric, & van

Noort, 2002). Damage-specific microglial activation and reaction, also

mediated by the PRRs, is an essential early cellular response to brain

injury (Giulian & Baker, 1985). For instance, TLR2 has a high affinity

for many pathogen-associated molecular patterns (PAMPs) (Drouin-

Ouellet & Cicchetti, 2012), whereas TLR4 can be triggered by

lipopolysaccharide and recognizes damage-associated molecular pat-

terns (DAMPs)—endogenous molecules released by injured tissue

(Bianchi & Manfredi, 2009; Okun et al., 2012). As there is strong over-

lap between the signaling pathways (Zhang et al., 2013), microglia

may not be able to discriminate between invading pathogens, stress,

or aberrant endogenous molecular patterns (Mariani & Kielian, 2009).

Overall, the activation of microglia through TLRs and their

coreceptors initiates an immune response that is geared toward

protecting the brain (Fellner et al., 2013; Latz, Xiao, & Stutz, 2013).

F IGURE 1 Microglial functions and molecular signaling in a normal physiological state. (a) In a normal physiological state, microglia contact
neurons and surveille their environment using different receptors, such as CX3CR1 (Cardona et al., 2006) and TLRs (Olson & Miller, 2004). They
eliminate immature or impaired synapses using their CR3 receptor which recognizes the complement system's C3 protein, and clear debris
(Schafer et al., 2012). Microglia also secrete different cytokines and GFs to promote cell survival, maturation and proliferation (Nayak et al., 2014).
IGF-1, secreted by microglia, promotes OPC differentiation and myelination (Wlodarczyk et al., 2017) and supports layer V neurons (Ueno et al.,
2013). BDNF, also secreted by microglia, promotes survival of neurons and synaptic plasticity (Parkhurst et al., 2013), and regulates OPC
differentiation and OL survival by positively modulating promyelinating transcription factors such as olig2 and PLP (Ramos-Cejudo et al., 2015;
Zhou et al., 2015). (b) Microglia-related molecular signaling in the CNS and the outcome process
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However, under certain circumstances (Fu, Shen, Xu, Luo, & Tang,

2014; Jones et al., 2015; Nair & Bonneau, 2006), microglia might be

exposed to nonphysiological levels of immune stimulators (Ekdahl

et al., 2009; Yao et al., 2013), affecting their typical responses.

Impaired microglial activity at different stages of life can severely

impair plasticity-related processes and cognitive functions (Morris,

Clark, Zinn, & Vissel, 2013). For instance, elevated microglial activa-

tion has been shown in response to a range of psychosocial stressors

in early life, as well as in adulthood (Calcia et al., 2016), known to

increase the risk of mental illness mediated by microglial inflammatory

activation (Frick, Williams, & Pittenger, 2013; Nair & Bonneau, 2006).

2.1 | Microglial polarization in autism spectrum
disorder

Alterations in microglial activity, morphology, and gene expression

have been associated with neurodevelopmental disorders (Garey,

2010; Gupta et al., 2014; Tetreault et al., 2012) (Figure 3). This is logi-

cal, given the crucial role played by microglia during development and

adulthood in the elimination and maturation of synapses (Paolicelli

et al., 2011). Several studies have shown that children with autism

spectrum disorder (ASD) suffer from an ongoing neuroinflammatory

process in different regions of the brain mediated by microglial activa-

tion (Chez, Dowling, Patel, Khanna, & Kominsky, 2007; Vargas

et al., 2005).

Indeed, microglial activation has been reported in multiple studies

focusing on ASD. For example, neuroimaging studies using positron-

emission tomography or magnetic resonance imaging (MRI) found

putative inflammation in the brains of ASD subjects (Pardo, Vargas, &

Zimmerman, 2005; Suzuki et al., 2013; Vargas et al., 2005). Similarly,

postmortem studies found increased density of microglia in the gray

matter, along with morphological abnormalities and altered neuronal

interactions in ASD subjects (Morgan et al., 2010). A study examining

the prefrontal cortex (PFC) in ASD subjects demonstrated a neuron-

directed microglial activation response in ASD (Morgan et al., 2012).

Microglial activation, which leads to neuroinflammation, was reported

in autistic children, with increased levels of oxidative stress mediators

and proinflammatory cytokines such as IL-6, TNF-α, and interferon-

gamma (IFN-γ) (Vargas et al., 2005). Increased protein levels of micro-

glial IL-6 were measured in the cerebellar cortex of subjects with ASD

(Wei et al., 2011), disrupting neuronal migration, an important process

in establishing proper brain wiring (Wei et al., 2011). Finally, using

transcriptome analysis, it was shown that genes related to microglial

activation are upregulated in autistic subjects (Gupta et al., 2014;

Voineagu et al., 2011).

2.2 | Maternal immune activation and ASD

One of the proposed risk factors for ASD involves maternal immune

activation (MIA) (Ponzio, Servatius, Beck, Marzouk, & Kreider, 2007;

Smith, Li, Garbett, Mirnics, & Patterson, 2007). A recent study

modeled MIA by acute administration of lipopolysaccharide to E12

mouse embryos and found significant elevation of IL-1β, TNF-α, and

IL-6 in the fetal brain, suggesting long-term microglial activation

(O'Loughlin, Pakan, Yilmazer-Hanke, & McDermott, 2017). Another

study modeled MIA by viral infection and similarly found alterations in

microglial activation, density, migration, and maturation properties in

the rat offspring (Zhang, Jing, Zhang, Bilkey, & Liu, 2018). Interest-

ingly, both studies suggested prolonged microglial activation, as it was

also evident postnatally. The potential link between MIA and micro-

glial activation was also examined using a few novel treatments in

human and animal trials. Microglial inhibition using luteolin decreased

F IGURE 2 Alteration of microglial properties and molecular signaling in pathology. Upon pathological stimulation, microglia may change from a

ramified to amoeboid form, secrete anti- or proinflammatory factors, and phagocytose harmful debris (Tremblay, 2014). However, in disorders
involving myelination deficits, microglia may be compromised in their ability to phagocytose myelin debris and support OLs (Butovsky et al., 2006b;
Zhou et al., 2015). In other pathological conditions, microglia can be overactivated and secrete high levels of inflammatory factors and radicals (Ekdahl,
Kokaia, & Lindvall, 2009; Groh, Klein, Berve, West, & Martini, 2018; Kim, Hong, & Bae, 2018). This excess inflammation may eventually lead to
neurotoxicity and neuronal death. Microglia-related treatments that result in microglial regulation have been shown to be effective in ameliorating
deficits and promoting remyelination in pathological conditions (Butovsky et al., 2006a; Groh et al., 2018; Janova et al., 2018)

BAR AND BARAK 2127

 10981136, 2019, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/glia.23637 by T

el A
viv U

niversity, W
iley O

nline L
ibrary on [11/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



their inflammatory effect, improved sociability in humans (Taliou et al.,

2013; Theoharides, Asadi, & Panagiotidou, 2012), and attenuated

autistic-like behaviors in mice (Bertolino et al., 2017). Interestingly,

gastrointestinal disturbances have also been suggested to influence

the severity of symptoms in children with ASD (Adams, Johansen,

Powell, Quig, & Rubin, 2011). Of relevance, a MIA-induced ASD

mouse model presented altered gut microbiota which was reversed after

treatment with Bacteroides fragilis (Hsiao et al., 2013). The gut microbiota

was suggested to reduce microglial secretion of proinflammatory cyto-

kines in ASD (Kim et al., 2018), and specifically, microbiota-derived bac-

terial fermentation products were suggested to regulate microglial

homeostasis (Erny et al., 2015). Apart from their role in development,

microglial actions play a crucial part in maintaining CNS homeostasis and

synaptic plasticity (Napoli & Neumann, 2009) (Figure 4).

3 | MICROGLIA, NEURON, AND OL
CROSSTALK UNDER HOMEOSTATIC
CONDITIONS AND IN SYNAPTIC PLASTICITY

3.1 | Microglia promote neurogenesis and
oligodendrogenesis

Neurogenesis and oligodendrogenesis in the CNS serve to maintain

its function. In the rat subventricular zone (SVZ), from postnatal days

1 through 10 (P1–P10), activated microglia are densely populated and

provide optimal levels of IL-1β, IFN-γ, and IL-6 to stimulate both neuro-

genesis and oligodendrogenesis (Shigemoto-Mogami et al., 2014; Wong,

Stowell, & Majewska, 2017). Accordingly, inhibition of microglia with

minocycline decreased microglial activation, reduced proinflammatory

cytokine levels (i.e., IL-1β, IL-6, TNF-α, and IFN-γ), and subsequently sig-

nificantly inhibited neurogenesis and oligodendrogenesis in the SVZ

(Shigemoto-Mogami et al., 2014).

Overall, these findings suggest that microglial activation status

affects the proliferation of SVZ neural progenitor cells (Matarredona,

Talaveron, & Pastor, 2018). Specifically, it was shown that IL-1β, IFN-

γ, and IGF-1 enhance neurogenesis, whereas only IL-1β and IL-6

enhance oligodendrogenesis (Shigemoto-Mogami et al., 2014). There-

fore, it can be concluded that the cytokines' roles and functions

depend on their context.

3.2 | Microglial fine sculpting of neuronal
connections during development and in the
mature CNS

Following their establishment in the CNS, microglia are highly mobile

and primarily use an amoeboid morphology to regulate neural circuits

(Nayak, Roth, & McGavern, 2014). For example, most of the cerebellar

Purkinje cells that undergo developmental apoptosis are engulfed by

amoeboid microglia, which release superoxide ions to trigger this pro-

cess (Marin-Teva et al., 2004).

F IGURE 3 Alteration of microglial properties and molecular signaling in neurodevelopmental disorders. Microglial alterations, such as
morphological abnormalities, altered microglial density and cell number (Morgan et al., 2010), high levels of inflammatory cytokines (Vargas,
Nascimbene, Krishnan, Zimmerman, & Pardo, 2005) and glutamate (Maezawa & Jin, 2010), compromised phagocytosis (Sekar et al., 2016), excess
synapses, and altered connectivity (Filipello et al., 2018; Sellgren et al., 2019), have been shown to occur in neurodevelopmental disorders.
Moreover, molecular alterations, such as upregulation of SHANK proteins and Psd95 in neurons (Kim et al., 2017), altered TREM2 expression
(Edmonson, Ziats, & Rennert, 2014; Filipello et al., 2018), and elevated levels of CX3CR1 and BDNF in microglia have been associated with ASD
(Edmonson et al., 2014; Ricci et al., 2013). Conversely, a reduction in microglial BDNF levels is seen in RTT (Katz, 2014), and a reduction in
myelin-related genes (CNP) has been measured in postmortem brains of schizophrenic and major depressive subjects (Aston, Jiang, & Sokolov,
2005; Peirce et al., 2006). Microglia-related treatments, such as inhibition of microglial activity, have been shown to be effective in ameliorating
deficits in neurodevelopmental disorders (Bertolino et al., 2017; Taliou, Zintzaras, Lykouras, & Francis, 2013)
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During brain development, neurons form an excess number of

synaptic connections; many of these are subsequently removed dur-

ing synapse sculpting (Figure 1), a critical process for appropriate brain

connectivity (Kettenmann, Kirchhoff, & Verkhratsky, 2013; Paolicelli

et al., 2011). Microglia are key regulators of synapse elimination dur-

ing development via refinement of immature synapses (Schafer &

Stevens, 2013; Sierra, Abiega, Shahraz, & Neumann, 2013) (Figure 4).

Microglia were shown to engulf presynaptic (i.e., axonal terminals) and

postsynaptic elements during developmental periods of circuit refine-

ment in the CNS (Bilimoria & Stevens, 2015; Paolicelli et al., 2011).

Contradictory results showed no evidence of elimination of postsyn-

aptic material, although microglial contact on dendritic spines was

suggested (Weinhard et al., 2018). Using in vivo two-photon imaging,

it was suggested that the microglial contact on spines can increase the

synchronization of neuronal populations by enhancing synaptic activ-

ity (Akiyoshi et al., 2018). Furthermore, it was shown in vitro that

adding microglia to neuronal cultures decreases synaptic activity, syn-

apse density, spine numbers, expression of AMPA receptor (GluA1),

and levels of synaptic adhesion molecules (Ji et al., 2013). These find-

ings demonstrate that “surveilling” microglia can modulate synaptic

activity by regulating the number of synapses.

In the adult brain, microglia remove synapses from damaged neu-

rons (Cullheim & Thams, 2007; Trapp et al., 2007) and are also key

regulators of neuronal and synapse function in the healthy brain

(Bilimoria & Stevens, 2015; Paolicelli & Ferretti, 2017) (Figure 1). Such

remodeling of neuronal synapses occurs constantly throughout life

(Wu et al., 2015), with synaptic connections in many areas constantly

undergoing remodeling based on experience, resulting in synaptic

plasticity (Tremblay et al., 2010). Connectivity-refinement deficits

may lead to the impairment of brain wiring as implicated in the etiol-

ogy of several neurodevelopmental disorders (Sekar et al., 2016;

Thion, Ginhoux, & Garel, 2018; Zhan et al., 2014), including ASD

(Filipello et al., 2018) and schizophrenia (McGlashan & Hoffman,

2000) (Figure 3). A recent study utilized microglia-like cells through

cellular reprogramming of monocytes from schizophrenia subjects

(Sellgren et al., 2019). Excessive synaptic pruning was shown to occur

in this subject-derived cellular model (Sellgren et al., 2019). Moreover,

synaptic elimination affects age-associated cognitive decline and the

development of several neurodegenerative disorders (Kim & Joh,

2006). Interestingly, synapse connectivity might also be affected by

alterations in myelination (Schain, Hill, & Grutzendler, 2014). Similar

to synaptic elimination, demyelination might disrupt the communica-

tion between neurons and has also been suggested to play a role in

neurodegenerative disorders (Nave & Ehrenreich, 2014; Trapp &

Nave, 2008).

3.3 | Microglia–OL crosstalk in myelination

Microglial interactions with OLs can affect OL functionality and mye-

lination properties. A recent study (Wlodarczyk et al., 2017) identified

a CD11c + microglial subset that predominates in primary myelinating

areas of the developing brain, and expresses genes for neuronal and

glial survival, migration, and differentiation. In contrast to healthy

adult and inflammation-activated cells, neonatal CD11c + microglia

F IGURE 4 Microglial functions and molecular signaling in synaptic plasticity. Microglia regulate the molecular signaling that can affect
synaptic plasticity processes such as LTP and LTD (Arnoux & Audinat, 2015; Maggi et al., 2009; Rogers et al., 2011). Microglia can also mediate
the removal of impaired or inhibitory synapses from neurons (Arnoux & Audinat, 2015; Trapp et al., 2007), and however, induce spine formation
(Ji, Akgul, Wollmuth, & Tsirka, 2013). These modifications can alter neuron survival and activity, which may lead to altered neuronal network
activity and synchronicity
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show unique myelinogenic and neurogenic phenotypes (Wlodarczyk

et al., 2017). These cells are the major source of IGF-1 (Rodriguez-

Perez, Borrajo, Diaz-Ruiz, Garrido-Gil, & Labandeira-Garcia, 2016),

and its selective depletion from CD11c + microglia leads to impair-

ment of primary myelination (Wlodarczyk et al., 2017). Interestingly,

microglia produce and secrete IGF-1 to support the survival of layer V

cortical neurons during postnatal development (Ueno et al., 2013), yet

OLs do this as well (Wilkins, Chandran, & Compston, 2001). There-

fore, microglia could be contributing to cell survival indirectly by

supporting oligodendrogenesis or through an additive effect on

OL-derived GFs.

Evidence of the microglia's role in oligodendrogenesis can be

found in rodents with acute or chronic experimental autoimmune

encephalomyelitis (EAE)—an experimental model of brain inflamma-

tion and multiple sclerosis (MS). Injection of IL-4-activated microglia

into the cerebrospinal fluid of rodents with EAE resulted in increased

oligodendrogenesis in the spinal cord and improved clinical symptoms

(Butovsky, Landa, et al., 2006a). The newly formed OLs were spatially

associated with microglia expressing major histocompatibility complex

class II proteins and IGF-1 (Butovsky, Landa, et al., 2006a). Treatment

with IGF-1 was also suggested to restore spine density and synaptic

amplitude, increase Psd95-expression levels, and stabilize cortical

plasticity in a mouse model for Rett syndrome (RTT) (Tropea et al.,

2009). Moreover, a reduced number of IGF-1-expressing microglia

was implicated in a mouse model of Tourette syndrome and was

suggested to mediate neuronal loss, although such a reduction was

not shown in human subjects (Frick & Pittenger, 2016). Thus, benefi-

cial consequences of microglia on the pathological conditions in which

myelin is impaired, being mediated by GF secretion, should be consid-

ered as a possible therapeutic approach (Hagemeyer et al., 2012).

3.4 | Roles of microglia and myelination in synaptic
plasticity

Aside from the well-known myelin-related neurological disorders, such

as MS (Trapp & Nave, 2008) and central pontine myelinolysis (Lampl &

Yazdi, 2002), myelin deficits resulting from altered glia–neuron interac-

tions are associated with altered neuronal plasticity and cognitive

impairments (McKenzie et al., 2014; Nave & Ehrenreich, 2014).

Microglia secrete cytokines and GFs and eliminate synapses in

part by monitoring synaptic transmission (Wake, Moorhouse,

Miyamoto, & Nabekura, 2013; Ziv et al., 2006); as such, they play a

key role in neuronal connection properties, in accordance with neuro-

nal function (Schafer et al., 2012). OLs greatly increase the speed of

electrical transmission through nerve axons by forming the axonal

myelin sheath and clustering ion channels at the nodes of Ranvier,

where action potentials are propagated (10.1038/nature09614,

2010). Myelination is finely and locally modified to orchestrate the

timing of action potentials that may require both high and low con-

duction velocities (Waxman, 1997). Microglia are also involved in

myelin debris clearance in normal aging (Shobin et al., 2017) and in

disease conditions, as shown in cuprizone-induced demyelination

models (Poliani et al., 2015; Skripuletz et al., 2010). The importance of

myelin debris clearance by microglia was demonstrated by blocking

microglia-specific phagocytosis through inhibition of Rab7 (a key regu-

lator in endolysosomal trafficking (Kiral, Kohrs, Jin, & Hiesinger,

2018)). This manipulation resulted in enhanced accumulation of mye-

lin fragments in microglial endosomes and prevented remyelination

(Safaiyan et al., 2016), emphasizing the microglia's key role in synaptic

plasticity.

3.5 | Microglia and myelin-associated proteins

Early studies using microglia and OL cocultures showed that microglia

stimulate the expression of myelin basic protein (Mbp) and proteolipid

protein (Plp) in OLs, suggesting a positive role for microglia in mye-

lination (Hamilton & Rome, 1994).

A recent study showed that in a Plp1-mutant mouse model for

progressive MS, targeting microglia by oral administration of colony

stimulating factor-1 receptor (CSF-1R) inhibitor substantially reduced

inflammation-related demyelination, axonopathic alterations, and neu-

ronal degeneration (Groh et al., 2018).

20 ,30-Cyclic-nucleotide 30-phosphodiesterase (CNP) is another

myelin-associated gene whose mRNA levels are significantly reduced

in postmortem brains of schizophrenic and major depressive subjects

(Aston et al., 2005; Flynn et al., 2003; Peirce et al., 2006). Moreover, a

significant decrease in CNP protein levels has been shown in postmor-

tem brains of schizophrenic patients (Flynn et al., 2003).

In humans and mice, reduced expression of CNP is associated with

catatonic signs in an age-dependent manner (Hagemeyer et al., 2012).

Depletion of microglia in Cnp-deficient mice prevented catatonia

onset in young and mature mice (Janova et al., 2018). These findings,

from postmortem tissues and the mouse model, revealed microglia

and low-grade inflammation of myelinated tracts as the triggers for

this previously unexplained mental condition (Janova et al., 2018).

Thus, specific microglia-targeting anti-inflammatory therapies might

help in treating other disorders associated with catatonia, such as

mood-induced psychotic disorders and malignant neuroleptic syn-

drome (Tandon et al., 2013).

4 | MICROGLIAL ALTERATIONS IN
WILLIAMS SYNDROME AND NEUROLOGICAL
CONDITIONS

We recently showed multifaceted myelin deficits in Williams syndrome

(WS) subjects and a mouse model for WS (Barak et al., accepted to

Nature Neuroscience, in press; Barak, B. et al., 2019), a genetic neu-

rodevelopmental disorder that affects social behavior and fine motor

skills (Barak & Feng, 2016). These myelination-related deficits, a result

of Gtf2i deletion in forebrain excitatory neurons, are mediated by abnor-

mal neuron–glia interactions and are ameliorated following administra-

tion of FDA-approved drugs such as 4-aminopyridine and clemastine.

We also measured a significantly increased number of microglia

(Iba1-positive cells) in the mutant mouse cortex (data not published),

where we characterized myelination deficits. This opens an exciting
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research avenue that connects the interplay between myelination and

microglial abnormalities to other neurodevelopmental disorders, as

increased microglial density has also been shown in ASD (Morgan et al.,

2010), schizophrenia (Garey, 2010), and WS (Wilder, Hanson, Lew, Bel-

lugi, & Semendeferi, 2018) (Figure 3).

Moreover, activated microglia-mediated brain inflammation has

been observed in attention deficit hyperactivity disorder (Anand, Colpo,

Zeni, Zeni, & Teixeira, 2017) and Tourette syndrome (Lennington et al.,

2016), whereas impaired synapse refinement has been seen in schizo-

phrenia (Sekar et al., 2016), and significant microgliosis has been

observed in subjects with depression who committed suicide (Steiner

et al., 2008).

5 | CONSEQUENCES OF ALTERED
MICROGLIAL ACTIVITY ON COGNITION AND
SYNAPTIC PLASTICITY IN THE CNS

5.1 | Microglia and the complement system in
synaptic plasticity

The complement system is an evolutionarily conserved branch of the

innate immune system. The mammalian complement family consists

of more than 30 soluble and cell-associated factors. These factors are

engaged in a cascade that converges in the cleavage of C3 to release

the anaphylactic peptide C3a and the opsonin C3b, followed by

downstream events (Zipfel & Skerka, 2009). Several studies have

suggested that microglia participate in synapse elimination through a

phagocytic engulfment mechanism involving complement receptor

3 (CR3) (Fu et al., 2012; Ramaglia et al., 2012; Schafer et al., 2012).

CRs bind to the complement fragments C3b and C4b—hub molecules

of the complement-activation cascade—and regulate clearance of

immune complexes and cell debris (Groves, Dart, Covarelli, & Caron,

2008; Khera & Das, 2009). CRs are also involved in activity-

dependent synapse sculpting, where key proteins of the complement

cascade, namely C1q and C3, were implicated in tagging “weaker”

synapses that are normally pruned (Stevens et al., 2007).

Microglia-mediated synaptic elimination depends on neuronal

activity, as microglia preferentially phagocytose less active presynap-

tic inputs (Stevens et al., 2007). C1q- and C3-mutant mice have excess

synaptic connections in the mouse retinogeniculate system, a com-

monly studied area in research on developmental synaptic elimination

(Stevens et al., 2007). This complement-dependent synaptic sculpting

is significantly downregulated in the mature visual thalamus,

suggesting a highly regulated process that is likely restricted to the

refinement stages of development (Schafer et al., 2012; Xavier,

Menezes, Goldman, & Nedergaard, 2014).

5.2 | Microglial CR3 and CR4 in neuropsychiatric
disorders

C4 promotes C3 activation, allowing the latter to covalently attach to

its targets and promote their engulfment by phagocytic cells (Fu et al.,

2012). C4 deficiency compromises synaptic elimination in mice

(Sekar et al., 2016). The C4A variant is significantly upregulated in

postmortem tissue of schizophrenic subjects (Gandal et al., 2018). The

frequency of C4B variant deficiency is significantly higher in ASD sub-

jects compared to controls (Odell et al., 2005), and the mRNA levels

of C1q, C3, and C4 are significantly decreased in the PFC of ASD sub-

jects (Fagan, Crider, Ahmed, & Pillai, 2017). Overall, these alterations

might affect the microglia's ability to recognize and engulf defective

synapses.

Further studies are needed on the C3 on C4 risk variants and

other complement system components, to reveal how they shape

behaviors relevant to psychiatric disorders. A transgenic animal model

that conditionally overexpresses C3 or C4 in the CNS has yet to be

examined. Such a transgenic model would enable studying whether

overtagging of synapses for microglial engulfment can enhance synap-

tic elimination, shedding light on neuropsychiatric disorders with

altered connectivity.

5.3 | Autophagy and the functional role of TREM2–
DAP12 in development and ASD

Triggering receptor expressed on myeloid cells 2 (TREM2) and its

adapter protein DAP12 are expressed exclusively by microglia in the

CNS (Bechade, Cantaut-Belarif, & Bessis, 2013; Chertoff, Shrivastava,

Gonzalez, Acarin, & Gimenez-Llort, 2013). TREM2 interacts with

DAP12 and stimulates microglial migration, cytoskeletal reorganiza-

tion, and increased phagocytosis associated with secretion/reduction

of cytokines, depending on the ligand to which the complex binds

(endogenous or exogenous) (Takahashi, Rochford, & Neumann, 2005).

TREM2 signaling has a variable impact in different brain regions,

depending on their myelin content, their level of TREM2 expression,

and the presence of alternative TREM2 ligands (Mecca, Giambanco,

Donato, & Arcuri, 2018; Poliani et al., 2015). In Trem2−/− mice, micro-

glial reduction was significant in the hippocampus, accompanied by

defective synapse elimination (Filipello et al., 2018). In the cuprizone

model, which mainly affects the corpus callosum, TREM2 was

required for microglial response to prolonged demyelination, removal

of damaged myelin sheaths, and secretion of trophic factors that sup-

port differentiation of OL precursor cells (OPCs) (Poliani et al., 2015).

Consistent with these findings, in an EAE mouse model, blocking

TREM2 function resulted in the accumulation of myelin debris that

continuously recruited non-engulfing microglia (Piccio et al., 2007).

Dap12-deficient microglia in embryos resulted in upregulation of

immune gene expression, and downregulated expression of genes

involved in nervous system development and function (Pont-Lezica

et al., 2014). This included neurite development and function, demon-

strating a key role for microglia in corpus callosum development.

Interestingly, defective synaptic refinement and dysfunctional

microglia are associated with ASD (Kim et al., 2017; Tang et al., 2014;

Wang et al., 2017).

Findings from postmortem brains of subjects with idiopathic ASD

displayed a significant reduction in TREM2 compared to healthy sub-

jects (Filipello et al., 2018). This was particularly evident in 5- to

23-year-old subjects, an age range that represents the developmental
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period coinciding with synapse refinement in humans (Stiles &

Jernigan, 2010). Trem2−/− mice show increased expression of synaptic

proteins such as Psd95 and Shank2, an increased number of dendritic

spines, increased functional connectivity between multiple brain

regions, and increased miniature excitatory postsynaptic currents

(mEPSCs) (Filipello et al., 2018).

These changes in Trem2−/− mice suggest circuit hyperexcitability

and reduced long-range functional connectivity, converging in the

observed altered sociability and repetitive behaviors that parallel

those of human ASD symptoms (Filipello et al., 2018). Interestingly, an

autistic-like behavior was observed in mice lacking the Atg7 gene, a

key component in autophagy, in cells of the myeloid lineage, including

microglia (Kim et al., 2017). This was accompanied by significantly

higher levels of Psd95 and Shank3 proteins and a significant elevation

in the number of dendritic spines, attributed to an impairment in syn-

apse elimination by microglia (Kim et al., 2017).

SHANK proteins encode a family of postsynaptic scaffolding pro-

teins present at glutamatergic synapses in the CNS (Amal et al., 2018;

Barak & Feng, 2016; Bozdagi et al., 2010; Monteiro & Feng, 2017;

Peca et al., 2011; Zhou et al., 2016). Impairments in microglia's ability

to sculpt synapses by phagocytic function could potentially lead to

abnormal expression of SHANK proteins in the synapses, perturbing

neurodevelopment. Interestingly, conflicting results showed a signifi-

cant increase in TREM2, DAP12, and CX3CR1 gene expression in the

PFC of idiopathic ASD subjects (Edmonson et al., 2014).

Together, these findings suggest that the TREM2–DAP12 axis is

essential for CNS homeostasis (Neumann & Takahashi, 2007) and may

be fundamental in regulating microglial phagocytic function during

their lifespan.

5.4 | Role of microglial fractalkine receptor in
synaptic plasticity and ASD

CX3CR1 is a Gi-protein-coupled receptor that is encoded by the

Cx3cr1 gene and is expressed mostly by microglia in the brain

(Cardona et al., 2006). However, its ligand, CX3CL1, also known as

fractalkine, is largely expressed in neurons (Tarozzo et al., 2003) and is

considered an OFF signal, keeping microglia in a nonactivated state

(Biber, Neumann, Inoue, & Boddeke, 2007; Cardona et al., 2006).

CX3CL1–CX3CR1 signaling represents a substantial communication

channel between neurons and microglia, mediating fundamental

microglial functions (Limatola & Ransohoff, 2014; Paolicelli, Bisht, &

Tremblay, 2014) (Figures 1 and 4).

Cx3cr1-deficient mice at different stages of development (P8,

P15, and P28) presented a transient decrease in the density of micro-

glial cells, which were compromised in their capacity to engulf synap-

tic material (Paolicelli et al., 2011). In addition, a transient increase in

dendritic spine density and a higher density of Psd95 were measured

in microglial processes in the mouse hippocampus (Paolicelli et al.,

2011). These alterations led to immature connectivity, augmented

long-term depression (LTD), and impaired functionality of the excit-

atory synaptic network during postnatal development in the hippo-

campus (Arnoux & Audinat, 2015). Both juvenile and adult mice

showed decreased functional brain connectivity and weak synaptic

transmission, leading to deficits in social interactions and increased

repetitive behavior (Paolicelli et al., 2011; Zhan et al., 2014), traits

linked to ASD in humans (Barak & Feng, 2016). In juvenile Cx3cr1-

deficient mice, this behavior was correlated with the observed tran-

sient circuit-sculpting deficits (Zhan et al., 2014).

Fractalkine is also involved in synaptic plasticity processes. For

instance, fractalkine expression is upregulated in the hippocampus

during memory-associated synaptic plasticity (Sheridan & Murphy,

2013). Yet, in Cx3cr1-deficient mice, reduced long-term potentiation

(LTP) was recorded (Rogers et al., 2011), whereas another study

showed increased LTP (Maggi et al., 2011). Moreover, deletion or

reduction of Cx3cr1 also led to elevated levels of the inflammatory

cytokine IL-1β, which triggered a reduction of LTP in the brain

(Wu et al., 2015). Ventricular infusion of an IL-1β receptor antagonist

for 4 weeks reversed this reduction (Rogers et al., 2011), whereas

infusion of an inactivated antagonist did not (Rogers et al., 2011).

Therefore, intact chemokine signaling between neurons and microglia

and appropriate levels of CNS cytokines are crucial for the mainte-

nance of normal plasticity mechanisms.

6 | ROLES OF MICROGLIAL CYTOKINES
AND BDNF IN SYNAPTIC PLASTICITY AND
COGNITION

6.1 | BDNF in synaptic plasticity

BDNF is one of the most important neurotrophins secreted by neu-

rons and glial cells, contributing to many aspects of CNS function,

including cell differentiation, normal developmental apoptosis, brain

connectivity, neuronal survival and migration, dendritic arborization,

synaptogenesis, and activity-dependent forms of synaptic plasticity

(Coull et al., 2005; Teng et al., 2005; Wu et al., 2015). Specifically,

microglial BDNF can be released to directly affect the structure and

function of nearby synapses (Parkhurst et al., 2013). Uncleaved pro-

BDNF expression levels at early postnatal stages (<4 weeks) are high,

leading to neuronal death and the removal of unnecessary neurons

(Deinhardt & Chao, 2014). Pro-BDNF selectively activates its high-

affinity receptor, the neurotrophin receptor p75 (p75NTR), leading

mainly to the induction of proapoptotic signaling pathways and has

been shown to facilitate LTD in the mouse hippocampus (Rosch,

Schweigreiter, Bonhoeffer, Barde, & Korte, 2005; Woo et al., 2005).

In adult mice, mature BDNF is the prominent isoform (Greenberg,

Xu, Lu, & Hempstead, 2009), and secretion of mature BDNF by

microglia increases phosphorylation of neuronal tropomyosin kinase

receptor type B (TrkB) (Parkhurst et al., 2013), a key mediator of syn-

aptic plasticity. Mature BDNF binds to its highly specific receptor

TrkB, increasing neuronal survival, and facilitating LTP (Deinhardt &

Chao, 2014) (Figure 4). These actions are determined via interactions

between the two transmembrane receptors, separately or together,

determining cell fate. Indeed, in human studies, polymorphism in the

BDNF gene has been associated with variations in hippocampal vol-

ume (Pezawas et al., 2004), memory performance (Egan et al., 2003),
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and susceptibility to plasticity-inducing brain-stimulation protocols

(Cheeran et al., 2008).

The importance of BDNF secretion by microglia was also demon-

strated in a study (Parkhurst et al., 2013) showing that depletion of

microglia leads to impaired activity of AMPA and NMDA receptors.

This suggests a role for microglia in regulating the level of synaptic

proteins that are associated with the glutamatergic excitatory synapse

function. Moreover, microglial depletion led to severe deficits in multi-

ple learning tasks and motor learning-induced synaptic remodeling

(Parkhurst et al., 2013). Similar effects were discovered in genetically

depleted microglial BDNF (Parkhurst et al., 2013). Elevated levels of

the proinflammatory cytokine IL-1β (experimentally or induced by

social isolation) were shown to decrease BDNF mRNA levels following

learning, inhibit LTP in several regions of the hippocampus in young

animals, and impair performance in behavioral paradigms such as the

Morris water maze (Morris, 1984) and contextual fear conditioning

(Barrientos et al., 2003), commonly used to examine hippocampus-

dependent memory (Yirmiya & Goshen, 2011). Importantly, adminis-

tration of IL-1 receptor antagonist before the social-isolation period

prevented both BDNF downregulation and memory impairments

produced by the isolation (Barrientos et al., 2003).

6.2 | BDNF involvement in myelination and
neurodevelopmental disorders

BDNF was shown to affect growth in neurons by stimulating axonal

sprouting toward a wound edge (Batchelor et al., 2002). Deficiency of

BDNF can lead to a reduced number of neuron/glial antigen 2-positive

OPCs and decreased expression of MBP and PLP in the CNS

(Vondran, Clinton-Luke, Honeywell, & Dreyfus, 2010). In subjects with

MS lesions, BDNF is primarily present in immune cells, such as

microglia and reactive astrocytes (Stadelmann et al., 2002). The number

of BDNF-immunopositive cells correlates with lesion demyelinating

activity. In an EAE mouse model, administration of 18β-glycyrrhetinic

acid (GRA) significantly reduced disease severity, mediated by a regula-

tory effect on microglia (Zhou et al., 2015). In addition, GRA treatment

promoted remyelination by reducing inflammation that might inhibit

BDNF expression in microglia and enhancing OPC proliferation (Zhou

et al., 2015).

Furthermore, following CNS injury, BDNF becomes a potent

extrinsic regulator of OPC differentiation and OL survival by positively

modulating promyelinating transcription factors such as Olig2 and

promoting expression of PLP (Ramos-Cejudo et al., 2015). BDNF in

the injured spinal cord induced the formation of new OLs and pro-

moted upregulation of MBP protein levels and prompt behavior

recovery (Ikeda et al., 2002; McTigue, Horner, Stokes, & Gage, 1998).

BDNF might also play a role in RTT and ASD (Katz, 2014; Ricci

et al., 2013), disorders with several intriguing differences, as well as

similarities (Castro, Mellios, & Sur, 2013; Fombonne, 2009). There is

evidence for immune system dysregulation early in life and altered

myelination in both conditions (Ameis & Catani, 2015; Nguyen et al.,

2013; Ricci et al., 2013). Decreased levels of BDNF have been impli-

cated in RTT in both humans and mice (Katz, 2014; Schaevitz,

Moriuchi, Nag, Mellot, & Berger-Sweeney, 2010). Moreover, impaired

phagocytosis of apoptotic cell debris along with a toxic increase in

glutamate release by microglia has been suggested in the RTT mouse

model (Derecki et al., 2012; Maezawa & Jin, 2010). In contrast, BDNF

was found to be elevated in subjects with ASD (Ricci et al., 2013),

although conflicting results showed an association between reduced

BDNF release from neurons and ASD (Sadakata et al., 2012).

Taken together, these findings underscore the importance of

microglial BDNF as an essential regulator of learning-induced synaptic

formation, functional connectivity, myelination, and behavioral perfor-

mance (Barrientos et al., 2003; Chen, Dowlatshahi, MacQueen,

Wang, & Young, 2001; McTigue et al., 1998) and suggest that BDNF

may have significant potential in therapeutic approaches.

7 | CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

Microglia are sensors of the CNS and playing a crucial role in health

and in pathological conditions (Napoli & Neumann, 2009) (Figures 1

and 2). Numerous studies have implicated microglia in supporting neu-

rons (Ueno et al., 2013), OLs and remyelination (Miron, 2017),

highlighting these cells as an important therapeutic target. Equipped

with PRRs, CRs, GFs, and cytokines, microglia take part in many pro-

cesses occurring in the CNS, with their response fitting the specific

conditions encountered (Olson & Miller, 2004; Stevens et al., 2007;

Ueno et al., 2013). In this review, we summarize microglial functions

in synaptic plasticity processes and neurological disorders, with special

emphasis on ASD. However, this is just the tip of the iceberg. During

development and throughout life, microglia promote myelination

(Wlodarczyk et al., 2017), sculpt neural circuits (Yirmiya & Goshen,

2011), and help shape proper connectivity by remodeling based on

experience, resulting in synaptic plasticity (Paolicelli et al., 2014)

(Figures 1 and 4). Impairments in microglial components can have

major consequences for the CNS, such as effects on circuit connectiv-

ity, homeostasis, immunological response, debris clearance, and

remyelination (Kim et al., 2017; Lampron et al., 2015; Streit, Braak,

Xue, & Bechmann, 2009). Impaired microglial activity at different

stages of life can severely impair plasticity processes and cognitive

functions, as seen in a variety of disorders, such as ASD (Suzuki et al.,

2013), Alzheimer's disease (Wendt et al., 2017), MS (Zrzavy et al.,

2017), and schizophrenia (Fillman et al., 2013).

7.1 | Which comes first? Microglial alterations
or ASD?

The microglia's contribution to primary damage in neurodevelopmental

disorders is still not fully understood. In this review, we mention a few

microglial alterations that are suggested to occur in ASD: MIA, increased

secretion of inflammatory cytokines (Vargas et al., 2005; Wei et al.,

2011), increased density (Morgan et al., 2010), and increased expression

of microglial activation-related genes (Gupta et al., 2014). However,

these abnormalities might act as secondary effects. Some of the factors
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supporting this are: (i) the above-cited studies measured activity and

density using markers that are not specific to microglial cells (Vargas

et al., 2005; Wei et al., 2011). For example, infiltrating macrophages can

also be detected using those markers and are also able to secrete the

detected cytokines (Arango Duque & Descoteaux, 2014); (ii) cytokines

from the peripheral immune system have already been suggested to be

involved in ASD (Masi et al., 2017); and (iii) studies examining MIA

reported no obvious changes in microglial activation (Garay, Hsiao,

Patterson, & McAllister, 2013; Giovanoli, Weber-Stadlbauer, Schedlowski,

Meyer, & Engler, 2016).

Nevertheless, malfunctioning microglia have the potential to cause

damage, such as connectivity problems and impaired myelination,

which might result in behavioral changes (Akiyoshi et al., 2018;

Bennett & Barres, 2017). As already noted, a reduction in TREM2 pro-

tein was observed in postmortem brains of autistic subjects (Filipello

et al., 2018), and increased connectivity was detected in Trem2−/−

mice (Filipello et al., 2018). Conversely, another study showed ele-

vated TREM2 gene expression in postmortem brains of autistic sub-

jects (Edmonson et al., 2014).

Therefore, it is important to further investigate both transcription

and translation levels, to get a better perspective on the source of the

problem: to better define the microglia's role in ASD, or in any disor-

der for that manner, microglial-specific genes should be detected and

recognized as risk factors. Interestingly, a recent study identified a

rare variant of the microglia-specific CX3CR1 gene and suggested its

role in some pathophysiological mechanisms of ASD and schizophre-

nia (Ishizuka et al., 2017). Recent studies have revealed microglial sub-

populations (Wlodarczyk et al., 2017), specific genes (Bennett et al.,

2016), and proteins (Satoh et al., 2016). Use of advanced trans-

criptomic and proteomic techniques will help distinguish microglia

from peripheral immune cells and might give a clearer picture of their

multifaceted roles in health and pathology. Future work should focus

on sorting subpopulations, manipulating genetic microglial aspects,

and examining whether this might lead to behavioral defects.

Evidence has emerged showing that microglia do not consist of

one identical population. Using a variety of methods, such as single-

cell RNA-Seq, fractal analysis, and mass cytometry (Karperien,

Ahammer, & Jelinek, 2013; Keren-Shaul et al., 2017; Mrdjen et al.,

2018), subpopulations are starting to be characterized and their roles

better defined, emphasizing the importance of the microglia's location

and target.

Specific plasticity-related processes could potentially be affected

by different microglial subpopulations with unique signatures of bio-

logical properties. Therefore, the pursuit of unique subsets of micro-

glial signatures would have an enormous impact on the way we

classify and study microglia, ultimately enabling development of better

pathology-specific treatment.
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